AM2_e_13.11.2007_TEST1_ENG.doc

(31 KB) Pobierz
13

 

 

13.11.07

CALCULUS II

TEST I

 

 

NAME...........................................................................................................

 

 

1.(7p) Let   z = x2 + 2 y2 - 2 draw  two level curves:

        (a)  one that passes through the point   (1,1)

        (b) one that lies on the xy-plane.

 

2.(7p) Show that the limit

                                          

    does not exist.

 

3. (7p) Show that     is a solution of the following differential   equation

                                                     uxy = 4xy u.

 

4. (7p) Use the chain Rule to find the partial derivatives    of 

 

                                f(x,y) = x ln(x + 2y),   x = t2 + s,   y = t s

 

5. (8p) Find all the critical points of     f(x,y) =  9xy – x3 y3.

 

6. (8p) Find the largest and smallest value of

                                                  f(x,y) = x2 - 2y2 - 6x  

           in the circle  .

 

7. (6p) True or False

    (a) Let f be defined on some neighbourhood of  point (0,0)  and both of the partial   derivatives   fx(0,0),   fy(0,0)   exist,  then  the function f is continuous ?

 

    (b) If    as     along every straight line through (a,b), then

      .

 

Zgłoś jeśli naruszono regulamin