Adjustable Turbocharger.pdf

(1023 KB) Pobierz
Self-Study Programme No.190 / Adjustable Turbocharger
Service.
190
Adjustable
Turbocharger
Design and Function
Self-Study Programme
Service Department
331999743.096.png 331999743.107.png
If the water level in the mill stream drops, the
current will no longer be sufficient to turn the
water wheel.
If the miller still wants to grind corn, then he
has to narrow the stream of water.
To the miller, the stream is as important as the
exhaust gas energy is to the turbocharger.
By using adjustable vanes, the response of the
adjustable turbocharger at low engine speeds
is quick.
SSP 190/01
2
331999743.118.png 331999743.126.png
Page
Fundamental principles
04
Design and function
06
Mechanics
11
Function chart
16
System overview
18
Engine control unit
19
Sensors
20
Actuators
24
Self-diagnosis
26
Functional diagram
29
Important! / Note!
New!
The Self Study Programme is not a Workshop Manual!
Please refer to the Service Literature which contains all the relevant inspection,
adjustment and repair instructions.
3
331999743.001.png
Fundamental principles
The basic principle of an exhaust
gas turbocharger
An exhaust gas turbocharger is used to
achieve high torques, and thus higher engine
outputs.
This effect is achieved by compressing the
intake air. The higher intake air density allows
a larger volume of air, and therefore more
oxygen, to enter the combustion chamber
during each intake cycle. The larger oxygen
supply boosts the efficiency of the combustion
process.
The exhaust gas of an engine contains both
thermal and kinetic energy. These energies are
utilised to drive the exhaust gas turbine of the
turbocharger.
The exhaust gas loses some of its energy and
cools down as a result.
The exhaust gas turbine drives the compressor
which in turn compresses the intake air,
heating it up and thus reducing its density.
The intake air is cooled down again in the air
intercooler, thereby increasing its density.
Air intercooler
Heat
The exhaust gas from the engine
drives the exhaust gas turbine.
The compressed and
heated air is fed into
the air intercooler.
Air
inlet
Exhaust pipe
SSP 190/02
Compressor
Exhaust gas turbine
The compressor compresses
the intake air.
The exhaust gas turbine drives
the compressor.
4
331999743.007.png 331999743.013.png 331999743.019.png 331999743.025.png 331999743.031.png 331999743.037.png 331999743.043.png 331999743.049.png 331999743.055.png 331999743.056.png 331999743.057.png 331999743.058.png 331999743.059.png 331999743.060.png 331999743.061.png 331999743.062.png 331999743.063.png 331999743.064.png 331999743.065.png 331999743.066.png 331999743.067.png 331999743.068.png 331999743.069.png 331999743.070.png 331999743.071.png 331999743.072.png 331999743.073.png 331999743.074.png 331999743.075.png 331999743.076.png 331999743.077.png 331999743.078.png 331999743.079.png 331999743.080.png 331999743.081.png 331999743.082.png 331999743.083.png 331999743.084.png 331999743.085.png 331999743.086.png 331999743.087.png 331999743.088.png 331999743.089.png 331999743.090.png 331999743.091.png 331999743.092.png 331999743.093.png 331999743.094.png 331999743.095.png 331999743.097.png 331999743.098.png 331999743.099.png 331999743.100.png 331999743.101.png 331999743.102.png 331999743.103.png 331999743.104.png 331999743.105.png 331999743.106.png 331999743.108.png 331999743.109.png 331999743.110.png 331999743.111.png 331999743.112.png 331999743.113.png 331999743.114.png 331999743.115.png 331999743.116.png 331999743.117.png 331999743.119.png 331999743.120.png 331999743.121.png 331999743.122.png
 
331999743.123.png
 
331999743.124.png
 
331999743.125.png
 
331999743.127.png
 
331999743.128.png
 
331999743.129.png
 
331999743.130.png
 
331999743.131.png
 
331999743.002.png
 
331999743.003.png
 
331999743.004.png
 
331999743.005.png
 
331999743.006.png
 
331999743.008.png
 
331999743.009.png
 
331999743.010.png
 
331999743.011.png
 
331999743.012.png
 
331999743.014.png
 
331999743.015.png
 
331999743.016.png
 
331999743.017.png
 
331999743.018.png
 
331999743.020.png
 
331999743.021.png
 
331999743.022.png
 
331999743.023.png
 
331999743.024.png
 
331999743.026.png
 
331999743.027.png
 
331999743.028.png
 
331999743.029.png
 
331999743.030.png
 
331999743.032.png
 
331999743.033.png
 
331999743.034.png
 
331999743.035.png 331999743.036.png
 
331999743.038.png
 
331999743.039.png
 
331999743.040.png
 
331999743.041.png
 
331999743.042.png
 
331999743.044.png
 
331999743.045.png
 
331999743.046.png
 
331999743.047.png
 
331999743.048.png
 
331999743.050.png
 
331999743.051.png
 
331999743.052.png
 
331999743.053.png
The exhaust gas turbocharger
fitted with a by-pass
A turbocharger has two sets of problems:
It was decided to make a compromise
regarding the design of the exhaust gas turbo-
charger fitted with a by-pass.
At the top end of the speed range, a partial
exhaust gas flow bypasses the turbocharger,
thus ensuring that the optimum air compres-
sion ratio is not exceeded and that the engine
delivers its full power output.
l
The turbine speed at the top end of the
speed range is high and the air is com-
pressed more than is necessary.
l
At the bottom end of the speed range, the
exhaust gas turbine does not reach the
required speed.
The air is not compressed sufficiently and
the engine is unable to deliver the desired
power output (turbo lag).
However, this system is ineffectual at the lower
end of the speed range.
The by-pass is opened or closed by means of a
pressure box.
Turbocharger with by-pass
Intake air
Exhaust gas flow
Bypass
Air intercooler
pressure box
Atmosphere
Intake manifold
Exhaust manifold
SSP 190/03
5
331999743.054.png
Zgłoś jeśli naruszono regulamin