IRFP460_1.pdf

(94 KB) Pobierz
I:\\PML\\DATA\\MOSMV\\500V\\IRFP460.DOC
Philips Semiconductors
Product specification
Avalanche energy rated
IRFP460
FEATURES
SYMBOL
QUICK REFERENCE DATA
• Repetitive Avalanche Rated
• Fast switching
d
V DSS = 500 V
• Stable off-state characteristics
• High thermal cycling performance
I D = 20 A
• Low thermal resistance
g
R DS(ON)
£
0.27
W
s
GENERAL DESCRIPTION
PINNING
SOT429 (TO247)
N-channel, enhancement mode
PIN
DESCRIPTION
field-effect power transistor,
intended for use in off-line switched
1
gate
mode power supplies, T.V. and
computer monitor power supplies,
2
drain
d.c. to d.c. converters, motor control
circuits and general purpose
3
source
switching applications.
tab
drain
The IRFP460 is supplied in the
SOT429 (TO247) conventional
leaded package.
1
2 3
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
V DSS
Drain-source voltage
T j = 25 ˚C to 150˚C
-
500
V
V DGR
Drain-gate voltage
T j = 25 ˚C to 150˚C; R GS = 20 k
W
-
500
V
V GS
Gate-source voltage
-
±
30
V
I D
Continuous drain current
T mb = 25 ˚C; V GS = 10 V
-
20
A
T mb = 100 ˚C; V GS = 10 V
-
12.4
A
I DM
Pulsed drain current
T mb = 25 ˚C
-
80
A
P D
Total dissipation
T mb = 25 ˚C
-
250
W
T j , T stg
Operating junction and
- 55
150
˚C
storage temperature range
AVALANCHE ENERGY LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
E AS
Non-repetitive avalanche
Unclamped inductive load, I AS = 20 A;
-
1300
mJ
energy
t p = 0.2 ms; T j prior to avalanche = 25˚C;
V DD
£
50 V; R GS = 50
W
; V GS = 10 V
E AR
Repetitive avalanche energy 1
I AR = 20 A; t p = 2.5
m
s; T j prior to
-
32
mJ
avalanche = 25˚C; R GS = 50
; V GS = 10 V
I AS , I AR
Repetitive and non-repetitive
-
20
A
avalanche current
1 pulse width and repetition rate limited by T j max.
September 1999
1
Rev 1.000
PowerMOS transistors
W
22890126.014.png
Philips Semiconductors
Product specification
Avalanche energy rated
IRFP460
THERMAL RESISTANCES
SYMBOL PARAMETER
CONDITIONS
MIN. TYP. MAX. UNIT
R th j-mb
Thermal resistance junction
-
-
0.5 K/W
to mounting base
R th j-a
Thermal resistance junction SOT429 package, in free air
-
45
-
K/W
to ambient
ELECTRICAL CHARACTERISTICS
T j = 25 ˚C unless otherwise specified
SYMBOL PARAMETER
CONDITIONS
MIN. TYP. MAX. UNIT
V (BR)DSS
Drain-source breakdown
V GS = 0 V; I D = 0.25 mA
500
-
-
V
voltage
D
V (BR)DSS / Drain-source breakdown
V DS = V GS ; I D = 0.25 mA
-
0.1
-
%/K
D
T j
voltage temperature
coefficient
R DS(ON)
Drain-source on resistance V GS = 10 V; I D = 10 A
-
0.2 0.27
W
V GS(TO)
Gate threshold voltage
V DS = V GS ; I D = 0.25 mA
2.0
3.0
4.0
V
g fs
Forward transconductance
V DS = 30 V; I D = 10 A
13
18
-
S
I DSS
Drain-source leakage current V DS = 500 V; V GS = 0 V
-
2
50
m
A
V DS = 400 V; V GS = 0 V; T j = 125 ˚C
-
100 1000
m
A
I GSS
Gate-source leakage current V GS =
±
30 V; V DS = 0 V
-
10
200
nA
Q g(tot)
Total gate charge
I D = 20 A; V DD = 400 V; V GS = 10 V
-
147 190
nC
Q gs
Gate-source charge
-
12
18
nC
Q gd
Gate-drain (Miller) charge
-
78
100
nC
t d(on)
Turn-on delay time
V DD = 250 V; R D = 12
W
;
-
23
-
ns
t r
Turn-on rise time
R G = 3.9
W
-
72
-
ns
t d(off)
Turn-off delay time
-
150
-
ns
t f
Turn-off fall time
-
75
-
ns
L d
Internal drain inductance
Measured from tab to centre of die
-
3.5
-
nH
L d
Internal drain inductance
Measured from drain lead to centre of die
-
4.5
-
nH
L s
Internal source inductance
Measured from source lead to source
-
7.5
-
nH
bond pad
C iss
Input capacitance
V GS = 0 V; V DS = 25 V; f = 1 MHz
-
3000
-
pF
C oss
Output capacitance
-
480
-
pF
C rss
Feedback capacitance
-
270
-
pF
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS
T j = 25 ˚C unless otherwise specified
SYMBOL PARAMETER
CONDITIONS
MIN. TYP. MAX. UNIT
I S
Continuous source current
T mb = 25˚C
-
-
20
A
(body diode)
I SM
Pulsed source current (body T mb = 25˚C
-
-
80
A
diode)
V SD
Diode forward voltage
I S = 20 A; V GS = 0 V
-
-
1.5
V
t rr
Reverse recovery time
I S = 20 A; V GS = 0 V; dI/dt = 100 A/
m
s
-
900
-
ns
Q rr
Reverse recovery charge
-
15
-
m
C
September 1999
2
Rev 1.000
PowerMOS transistors
22890126.015.png
Philips Semiconductors
Product specification
Avalanche energy rated
IRFP460
120
110
100
90
80
70
60
50
40
30
20
10
0
PD%
Normalised Power Derating
Zth j-mb (K/W)
PHW20N50E
1
D = 0.5
0.1
0.2
0.1
0.05
0.02
P
tp
D = tp/T
0.01
single pulse
T
0.001
0
20
40
60
80
100 120 140
1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00 1E+01
Pulse width, tp (s)
Tmb / C
Fig.1. Normalised power dissipation.
PD% = 100
×
P D /P D 25 ˚C = f(T mb )
Fig.4. Transient thermal impedance.
Z th j-mb = f(t); parameter D = t p /T
120
110
100
90
80
70
60
50
40
30
20
10
0
ID%
Normalised Current Derating
Drain Current, ID (A)
PHW20N50E
20
Tj = 25 C
VGS = 10 V
18
16
8 V
14
12
5 V
10
4.8 V
8
4.6 V
6
4.4 V
4
4.2 V
2
4 V
0
0
20
40
60
80
100 120 140
0
1
2
3
4
5
Tmb / C
Drain-Source Voltage, VDS (V)
Fig.2. Normalised continuous drain current.
ID% = 100
×
I D /I D 25 ˚C = f(T mb ); conditions: V GS
³
10 V
Fig.5. Typical output characteristics.
I D = f(V DS ); parameter V GS
Drain-Source On Resistance, RDS(on) (Ohms)
PHW20N50E
Peak Pulsed Drain Current, IDM (A)
PHW20N50E
0.5
4V 4.2V
4.6 V
Tj = 25 C
100
4.8V
5V
tp = 10 us
4.4 V
0.45
10
100us
0.4
1 ms
0.35
RDS(on) = VDS/ ID
10 ms
d.c.
1
0.3
100 ms
VGS = 6 V
0.25
10V
0.1
0.2
10
100
1000
0 2 4 6 8 024680
Drain Current, ID (A)
Drain-Source Voltage, VDS (V)
Fig.3. Safe operating area. T mb = 25 ˚C
I D & I DM = f(V DS ); I DM single pulse; parameter t p
Fig.6. Typical on-state resistance.
R DS(ON) = f(I D ); parameter V GS
September 1999
3
Rev 1.000
PowerMOS transistors
22890126.016.png 22890126.017.png 22890126.001.png 22890126.002.png 22890126.003.png
Philips Semiconductors
Product specification
Avalanche energy rated
IRFP460
VGS(TO) / V
Drain current, ID (A)
PHW20N50E
30
max.
VDS > ID X RDS(ON)
4
25
typ.
20
3
15
min.
150 C
Tj = 25 C
2
10
5
1
0
0
1
2
3
4
5
6
7
8
0
-60 -40 -20 0
20 40 60 80 100 120 140
Tj / C
Gate-source voltage, VGS (V)
Fig.7. Typical transfer characteristics.
I D = f(V GS ); parameter T j
Fig.10. Gate threshold voltage.
V GS(TO) = f(T j ); conditions: I D = 0.25 mA; V DS = V GS
ID / A
SUB-THRESHOLD CONDUCTION
1E-01
Transconductance, gfs (S)
VDS > ID X RDS(ON)
PHW20N50E
20
18
Tj = 25 C
1E-02
16
14
1 50 C
2 %
typ
98 %
12
1E-03
10
8
1E-04
6
4
1E-05
2
0
0
5
10
15
20
25
30
1E-06
0
1
2
3
4
Drain current, ID (A)
VGS / V
Fig.8. Typical transconductance.
g fs = f(I D ); parameter T j
Fig.11. Sub-threshold drain current.
I D = f(V GS) ; conditions: T j = 25 ˚C; V DS = V GS
a
Normalised RDS(ON) = f(Tj)
Capacitances, Ciss, Coss, Crss (pF)
PHW20N50E
10000
2
Ciss
1
1000
Coss
Crss
0
100
-60 -40 -20 0 20 40 60 80 100 120 140
Tj / C
0.1
1
10
100
Drain-Source Voltage, VDS (V)
Fig.9. Normalised drain-source on-state resistance.
a = R DS(ON) /R DS(ON)25 ˚C = f(T j ); I D = 10 A; V GS = 10 V
Fig.12. Typical capacitances, C iss , C oss , C rss .
C = f(V DS ); conditions: V GS = 0 V; f = 1 MHz
September 1999
4
Rev 1.000
PowerMOS transistors
22890126.004.png 22890126.005.png 22890126.006.png 22890126.007.png 22890126.008.png 22890126.009.png 22890126.010.png 22890126.011.png
Philips Semiconductors
Product specification
Avalanche energy rated
IRFP460
Source-Drain Diode Current, IF (A)
PHW20N50 E
Gate-source voltage, VGS (V)
ID = 20A
Tj = 25 C
PHW20N50E
50
15
VGS = 0 V
45
14
1 13
40
300V
11
35
10
200V
30
8
25
VDD = 400 V
150 C
Tj = 25 C
20
6
5
15
3
10
2
5
0
0
0
25
50
75
100
125
150
175
200
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Drain-Source Voltage, VSDS (V)
Gate charge, QG (nC)
Fig.13. Typical turn-on gate-charge characteristics.
V GS = f(Q G ); parameter V DS
Fig.16. Source-Drain diode characteristic.
I F = f(V SDS ); parameter T j
Switching times, td(on), tr, td(off), tf (ns)
PHW20N50E
Non-repetitive Avalanche current, IAS (A)
600
100
td(off)
500
400
Tj prior to avalanche = 25 C
300
10
tr, tf
VDS
125 C
200
tp
100
td(on)
ID
PHW20N50E
0
1
0
5
10
15
20
25
30
1E-06
1E-05
1E-04
1E-03
1E-02
Gate resistance, RG (Ohms)
Avalanche time, tp (s)
Fig.14. Typical switching times; t d(on) , t r , t d(off) , t f = f(R G )
Fig.17. Maximum permissible non-repetitive
avalanche current (I AS ) versus avalanche time (t p );
unclamped inductive load
1.15
Normalised Drain-source breakdown voltage
V(BR)DSS @ Tj
V(BR)DSS @ 25 C
100
Maximum Repetitive Avalanche Current, IAR (A)
1.1
1.05
10
Tj prior to avalanche = 25 C
1
125 C
0.95
1
0.9
PHW20N50E
0.1
0.85
1E-06
1E-05
1E-04
1E-03
1E-02
-100
-50
0
50
100
150
Avalanche time, tp (s)
Tj, Junction temperature (C)
Fig.15. Normalised drain-source breakdown voltage;
V (BR)DSS /V (BR)DSS 25 ˚C = f(T j )
Fig.18. Maximum permissible repetitive avalanche
current (I AR ) versus avalanche time (t p )
September 1999
5
Rev 1.000
PowerMOS transistors
22890126.012.png 22890126.013.png
Zgłoś jeśli naruszono regulamin