Woodgas stove.pdf

(263 KB) Pobierz
Microsoft Word - Woodgas stove.DOC
A WOOD-GAS STOVE FOR DEVELOPING COUNTRIES
T. B. Reed and Ronal Larson
The Biomass Energy Foundation, Golden, CO., USA
ABSTRACT
Through the millennia wood stoves for cooking have been notoriously inefficient and
slow. Electricity, gas or liquid fuels are preferred for cooking - when they can be obtained. In
the last few decades a number of improvements have been made in woodstoves , but still the
improved wood stoves are difficult to control and manufacture and are often not accepted by the
cook.
Gasification of wood (or other biomass) offers the possibility of cleaner, better controlled
gas cooking for developing countries. In this paper we describe a wood-gas stove based on a
new, simplified wood gasifier. It offers the advantages of “cooking with gas” while using a wide
variety of biomass fuels. Gas for the stove is generated using the “inverted downdraft gasifier”
principle. In one mode of operation it also produces 20-25% charcoal (dry basis).
The stove operates using natural convection only. It achieves clean “blue flame”
combustion using an “air wick” that optimizes draft and stabilizes the flame position.
The emissions from the close coupled gasifier-burner are quite low and the stove can be
operated indoors.
Keywords: inverted downdraft gasifier, domestic cooking stove, natural draft
*Presented at the “Developments in Thermochemical Biomass Conversion” Conference,
Banff, Canada, 20-24 May, 1996.
1
A WOOD-GAS STOVE FOR DEVELOPING COUNTRIES
T. B. Reed and Ronal Larson
The Biomass Energy Foundation, Golden, CO., USA
1. Introduction -
1.1. TheProblem
Since the beginning of civilization wood and biomass have been used for cooking. Over 2
billion people cook badly on inefficient wood stoves that waste wood, cause health problems and
destroy the forest. Electricity, gas or liquid fuels are preferred for cooking - when they can be
obtained, but they depend on having a suitable infrastructure and are often not available in
developing countries.
In the last few decades, many improved wood stoves have been developed (the Chula, the
Hiko, the Maendeleo, the Kuni Mbili, etc.), but the new wood stoves are often more difficult to
manufacture, often more heat goes to the stove than to the food, and they do not offer good
control of cooking rate. They are not always accepted by the cooks for whom they are
developed.[1]
Because of the problems of wood cooking, people often cook over charcoal. However,
charcoal manufacture is very wasteful of energy and very polluting, so the problems of the wood
stove are externalized but not solved.
1.2. THE SOLUTION
Gas is preferred for cooking wherever it is available. Gas can be made from wood and
biomass in gasifiers developed in this century, but these gasifiers are generally too big for home
use. A downdraft stove for domestic cooking is now being manufactured in China.[2]
We have developed a new “inverted downdraft gasifier” stove shown in Fig. 1. It
operates using only natural convection. The rate of gas production and heating is controlled by
the primary air supply to the gasifier. As an option, the gasifier can make charcoal with a 20-
25% yield.
The wood-gas stove consists of an “inverted downdraft gasifier” (shown in Fig. 2) plus a
burner to mix air and gas and burn cleanly (Fig. 3). These sections are discussed below.
The stove has been started and operated indoors with no exhaust fans and no odor of
burning wood. However, we believe that there is still much work to be done in optimizing the
stove for various fuels, adapting it to various cooking situations and developing other uses. For
that reason we are publishing our preliminary results and hope that others will help adapt these
principles to improve world cooking and wood conservation.
2
Cooking Pan
Gas Wick
Insulation
Secondary
Air
Pyrolysis
Gas
Charcoal
Zone
Flaming
Pyrolysis
Zone
Ungasified Wood
Grate
15 CM
Primary
Air Control
Fig. 1 - Wood-gas cooking stove showing lower gasifier section, upper burner section
and pan heating
2. CONSTRUCTION OF THE WOOD-GAS STOVE
2.1. The Inverted Downdraft Gasifier
Wood gasifiers can be classified as: Fixed bed (updraft and downdraft); and fluidized
bed. Fluidized bed gasifiers Require high power input, and exact controls and are suitable only
for large installations.
Updraft gasifiers produce large amounts of tar while consuming the charcoal residue and
are not suitable for cooking.
Downdraft gasifiers in the 5-100 kW level were widely used in World War II for
operating vehicles and trucks because of the relatively low tar levels. [3] In operation, air is
drawn down through a bed of burning wood, consuming the volatiles. The resulting gas then
passes over the resulting charcoal and is reduced to a low energy fuel gas. However, since hot
gases naturally rise, it is necessary to supply power to draw the gases DOWN through the
gasifier.
In 1985 we developed the “inverted downdraft gasifier” (also called “upside downdraft,
or pyrolysing gasifier) operating on natural draft. The name comes from the fact that the fuel
charge is lit ON THE TOP, and forms a layer of charcoal there; the flaming pyrolysis zone is
below that; the unburned fuel is on the bottom of the pile, and primary air for pyrolytic
3
647505205.050.png 647505205.051.png 647505205.052.png 647505205.053.png 647505205.001.png 647505205.002.png 647505205.003.png 647505205.004.png 647505205.005.png 647505205.006.png 647505205.007.png 647505205.008.png 647505205.009.png 647505205.010.png 647505205.011.png 647505205.012.png 647505205.013.png 647505205.014.png 647505205.015.png 647505205.016.png 647505205.017.png 647505205.018.png 647505205.019.png 647505205.020.png 647505205.021.png 647505205.022.png 647505205.023.png 647505205.024.png 647505205.025.png 647505205.026.png 647505205.027.png 647505205.028.png 647505205.029.png
gasification enters at the bottom and moves UP, forming gas in the flaming pyrolysis zone, as
shown in Fig. 2.
At that time we built a clean, efficient stove using a jet of compressed air to mix
secondary air with the gas and a venturi burner to hold the flame. However, developing country
households typically do not have compressed air, so we began development of a natural draft,
close coupled cooking gasifier. In 1991 we described a cooking stove based on the inverted
downdraft gasifier with natural draft secondary air entering the gasifier above the charcoal zone.
The combustion in this stove was relatively clean, but the poor air-gas mixing resulted in a
unstable, partly yellow flame. The stove is marketed under the name “GAS-I-FIRE”. [4]
Pyrolysis
Gas
Charcoal
Zone
Flaming
Pyrolysis
Zone
Ungasified Wood
Grate
15 CM
Primary
Air Control
Fig. 2 - Inverted downdraft gasifier made from “riser sleeve”, showing primary air inlet,
fuel zone, flaming pyrolysis zone and charcoal zone.
The inverted downdraft gasifier is operated in batch mode, appropriate for cooking
meals. (The gasifier can also be operated continuously by addition of an auger feed for the fuel at
the bottom and an auger to remove charcoal at the top. However, this complicates construction.)
We have built several dozen gasifiers from tin cans, pails, stove pipes and “riser sleeves”.
We have operated gasifiers varying in size from 10 cm (4 in) to 25 cm (10 in) inside diameter.
We have built several dozen burner combinations while looking for clean combustion from the
burner.
The simplest gasifiers are made from 2 lb coffee cans using a “church key” can opener to
punch holes in the bottom. Heat losses are high in can stoves, but they are very simple to build.
We use metal shears for cutting the metal parts, and sheet metal screws for outside attachments
and burner and pan supports.
“Riser sleeves” are particularly useful for construction of these stoves. They are made
for use in casting molten iron and bronze, so are not affected by the temperatures involved in
gasification and combustion. They are available in nominal 3 in to 6 in inside diameter in ½ in
steps and in 6 to 10 in inside diameter in one inch steps. All stock sleeves are 30 cm (12 in) tall.
4
647505205.030.png 647505205.031.png 647505205.032.png 647505205.033.png 647505205.034.png 647505205.035.png 647505205.036.png 647505205.037.png 647505205.038.png 647505205.039.png 647505205.040.png 647505205.041.png 647505205.042.png 647505205.043.png 647505205.044.png 647505205.045.png 647505205.046.png
As purchased, they are relatively soft and can be cut with saw or razor knife. However, they can
also be “rigidized” by application of amorphous silica. They provide excellent insulation, and
this is particularly important in small diameter gasifiers. 15 cm OD, 12.5 cm ID sleeves 30 cm
tall capable of containing molten steel retail for about $3 in the U.S.[Riser] We believe that our
stove can be built for under US$10 in the U.S. or developing countries.
A major advantage of the inverted downdraft gasifier is that the rate of gas production
depends on the amount of primary air admitted to the bottom. For this reason it is very important
to put a tight sealing valve on the bottom which permits a wide range of air adjustments. A
simple valve made from 24 gauge sheet metal is shown in Fig. 3.
1/2inX21/4intab
1incircle
Rivet
19 .09 in holes
6inchcircle
5incircle
Fig. 3. Details of one type of air valve for coarse and fine control of primary air.
We have also constructed very satisfactory stoves from tin cans with riser sleeve liners.
Use of the outer can permits addition of simple handles to the gasifier and burner sections.
2.2. The Wood-Gas Burner
Many burner designs have been tested for the wood-gasifier. The simplest is a series of
holes in the gasifier above the level of the charcoal (as discussed for the Hottenroth stove above).
However, this does not give good mixing and complete combustion. A better burner consists of a
second can mounted a distance of about 1 cm above the first can. Air enters through this annular
ring and mixes with the gas and burns.
We have developed a “blue flame” burner (Fig. 4), using a “gas wick” to burn the gas in
a very clean manner. In order for the amount of combustion products to have maximum draft, the
area must be adjusted. (Conventional gas stoves typically have a ring of fire about 70-120 mm
in diameter and about 5 mm across the ring.)
5
3/32 in holes,
51/2inBC
647505205.047.png 647505205.048.png 647505205.049.png
Zgłoś jeśli naruszono regulamin