2n5191-d.pdf

(104 KB) Pobierz
2N5191
ON Semiconductor
Silicon NPN Power Transistors
2N5191
2N5192
*
. . . for use in power amplifier and switching circuits, — excellent
safe area limits. Complement to PNP 2N5194, 2N5195.
*ON Semiconductor Preferred Device
*MAXIMUM RATINGS
4 AMPERE
POWER TRANSISTORS
SILICON NPN
60–80 VOLTS
40 WATTS
Rating ÎÎÎÎÎ
Symbol ÎÎÎÎ
2N5191 ÎÎÎÎ
2N5192 ÎÎÎ
Unit
Collector–Emitter Voltage ÎÎÎÎÎ
V CEO ÎÎÎÎ
60 ÎÎÎÎ
80 ÎÎÎ
Vdc
Collector–Base Voltage ÎÎÎÎÎ
V CB ÎÎÎÎ
60 ÎÎÎÎ
80 ÎÎÎ
Vdc
Emitter–Base Voltage ÎÎÎÎÎ
V EB ÎÎÎÎÎÎÎ
5.0 ÎÎÎ
Vdc
Collector Current ÎÎÎÎÎ
I C ÎÎÎÎÎÎÎ
4.0 ÎÎÎ
Adc
Base Current
I B ÎÎÎÎÎÎÎ
1.0
Adc
Total Power Dissipation @ T C = 25 C
Derate above 25 C
P D ÎÎÎÎÎÎÎ
40
320
Watts
mW/ C
Operating and Storage Junction
Temperature Range
T J , T stg
–65 to +150
C
THERMAL CHARACTERISTICS
Characteristic
Symbol ÎÎÎÎÎÎ
Max
Unit
CASE 77–09
TO–225AA TYPE
Thermal Resistance, Junction to Case ÎÎÎÎÎ
q JC
3.12
C
*ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted)
Characteristic
Symbol
Min ÎÎÎ
Max ÎÎÎÎ
Unit
OFF CHARACTERISTICS
Collector–Emitter Sustaining Voltage (1)
(I C = 0.1 Adc, I B = 0)
V CEO(sus)
Vdc
2N5191
2N5192
60
80
Collector Cutoff Current
(V CE = 60 Vdc, I B = 0)
I CEO ÎÎÎÎ
mAdc
2N5191
1.0
1.0
(V CE = 80 Vdc, I B = 0)
2N5192
Collector Cutoff Current
(V CE = 60 Vdc, V EB(off) = 1.5 Vdc)
I CEX
mAdc
2N5191
0.1
0.1
2.0
2.0
(V CE = 80 Vdc, V EB(off) = 1.5 Vdc)
2N5192
(V CE = 60 Vdc, V EB(off) = 1.5 Vdc, T C = 125 C)
2N5191
(V CE = 80 Vdc, V EB(off) = 1.5 Vdc, T C = 125 C)
2N5192
Collector Cutoff Current
(V CB = 60 Vdc, I E = 0)
I CBO ÎÎÎÎ
mAdc
2N5191
0.1
0.1
(V CB = 80 Vdc, I E = 0)
2N5192
Emitter Cutoff Current
(V BE = 5.0 Vdc, I C = 0)
I EBO
1.0 ÎÎÎÎ
mAdc
(1) Pulse Test: Pulse Width 300 m s, Duty Cycle 2.0%.
*Indicates JEDEC Registered Data.
Preferred devices are ON Semiconductor recommended choices for future use and best overall value.
W Semiconductor Components Industries, LLC, 2001
March, 2001 – Rev. 9
1
Publication Order Number:
2N5191/D
23102684.010.png 23102684.011.png 23102684.012.png
2N5191 2N5192
*ELECTRICAL CHARACTERISTICS — continued (T C = 25
C unless otherwise noted)
Characteristic
Symbol ÎÎÎ
Min ÎÎÎÎ
Max ÎÎÎ
Unit
ON CHARACTERISTICS
DC Current Gain (2)
(I C = 1.5 Adc, V CE = 2.0 Vdc)
h FE
2N5191
2N5192
25
20
10
7.0
100
80
(I C = 4.0 Adc, V CE = 2.0 Vdc)
2N5191
2N5192
Collector–Emitter Saturation Voltage (2)
(I C = 1.5 Adc, I B = 0.15 Adc)
(I C = 4.0 Adc, I B = 1.0 Adc)
V CE(sat) ÎÎÎ
Vdc
0.6
1.4
Base–Emitter On Voltage (2)
(I C = 1.5 Adc, V CE = 2.0 Vdc)
V BE(on)
ÎÎÎÎ
1.2 ÎÎÎ
Vdc
DYNAMIC CHARACTERISTICS
Current–Gain — Bandwidth Product
(I C = 1.0 Adc, V CE = 10 Vdc, f = 1.0 MHz)
f T ÎÎÎ
2.0 ÎÎÎÎ
ÎÎÎ
MHz
(2) Pulse Test: Pulse Width 300 m s, Duty Cycle 2.0%.
*Indicates JEDEC Registered Data.
10
T J = 150 ° C
7.0
5.0
V CE = 2.0 V
V CE = 10 V
3.0
2.0
1.0
0.7
0.5
0.3
25 ° C
-55 ° C
0.2
0.1
0.004
0.007 0.01
0.02
0.03
0.05
0.1
0.2
0.3
0.5
1.0
2.0
3.0
4.0
I C , COLLECTOR CURRENT (AMP)
Figure 1. DC Current Gain
2.0
T J = 25 ° C
1.6
1.2
I C = 10 mA
100 mA
1.0 A
3.0 A
0.8
0.4
0 0.05
0.07 0.1
0.2
0.3
0.5 0.7 1.0
2.0
3.0
5.0 7.0
10
20
30
50 70 100
200 300
500
I B , BASE CURRENT (mA)
Figure 2. Collector Saturation Region
http://onsemi.com
2
23102684.013.png 23102684.001.png
2N5191 2N5192
2.0
+2.5
T J = 25 ° C
+2.0
+1.5
*APPLIES FOR I C /I B 3
h FE @V CE 2.0V
2
1.6
T J = -65 ° C to +150 ° C
+1.0
1.2
+0.5
0
-0.5
-1.0
-1.5
-2.0
-2.5
* q V for V CE(sat)
0.8
V BE(sat) @ I C /I B = 10
V BE @ V CE = 2.0 V
0.4
q V for V BE
V CE(sat) @ I C /I B = 10
0.005
0.01 0.02 0.03 0.05
0.1
0.2 0.3
0.5
1.0
2.0
3.0
4.0
0.005 0.01 0.02 0.03 0.05
0.1
0.2 0.3
0.5
1.0 2.0
3.0
4.0
I C , COLLECTOR CURRENT (AMP)
I C , COLLECTOR CURRENT (AMP)
Figure 3. “On” Voltages
Figure 4. Temperature Coefficients
10 3
10 7
V CE = 30 V
I C = 10 x I CES
V CE = 30 V
10 2
10 6
10 1
T J = 150 ° C
I C 9 I CES
10 5
10 0
100 ° C
I C = 2 x I CES
FORWARD
10 4
REVERSE
10 -1
10 -2
25 ° C
10 3
(TYPICAL I CES VALUES
OBTAINED FROM FIGURE 5)
I CES
10 -3
10 2
-0.4
-0.3 -0.2 -0.1
0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6
20
40
60
80
100
120
140
160
V BE , BASE-EMITTER VOLTAGE (VOLTS)
T J , JUNCTION TEMPERATURE ( ° C)
Figure 5. Collector Cut–Off Region
Figure 6. Effects of Base–Emitter Resistance
300
TURN-ON PULSE
V CC
R C
T J = +25 ° C
APPROX
+11 V
200
V in
SCOPE
R B
C jd <<C eb
V in
0
V EB(off)
t 1
100
t 3
-4.0 V
C eb
APPROX
+11 V
t 1 3 7.0 ns
100 < t 2 < 500 m s
t 3 < 15 ns
R B and R C varied
to obtain desired
current levels
70
50
C cb
V in
t 2
DUTY CYCLE 9 2.0%
APPROX -9.0 V
30
0.1
0.2 0.3 0.5
1.0
2.0
3.0 5.0
10
20
30
40
TURN-OFF PULSE
V R , REVERSE VOLTAGE (VOLTS)
Figure 7. Switching Time Equivalent Test Circuit
Figure 8. Capacitance
http://onsemi.com
3
0
23102684.002.png 23102684.003.png 23102684.004.png 23102684.005.png 23102684.006.png 23102684.007.png
2N5191 2N5192
2.0
2.0
t s 4
I C /I B = 10
T J = 25 ° C
1.0
0.7
0.5
1.0
0.7
0.5
t r @ V CC = 30 V
t f @ V CC = 30 V
0.3
0.2
t r @ V CC = 10 V
0.3
0.2
t f @ V CC = 10 V
0.1
0.1
I B1 = I B2
I C /I B = 10
t s 4 = t s - 1/8 t f
T J = 25 ° C
0.07
t d @ V EB(off) = 2.0 V
0.07
0.05
0.05
0.03
0.03
0.02
0.07 0.1
0.2
0.3
0.5
0.7
1.0
2.0
3.0
4.0
0.05
0.07 0.1
0.2
0.3
0.5
0.7
1.0
2.0
3.0
4.0
I C , COLLECTOR CURRENT (AMP)
I C , COLLECTOR CURRENT (AMP)
Figure 9. Turn–On Time
Figure 10. Turn–Off Time
10
There are two limitations on the power handling ability of
a transistor; average junction temperature and second
breakdown. Safe operating area curves indicate I C – V CE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 11 is based on T J(pk) = 150
5.0
5.0ms
100 m s
1.0ms
T J = 150 ° C
2.0
dc
1.0
C; T C is
variable depending on conditions. Second breakdown pulse
limits are valid for duty cycles to 10% provided T J(pk)
SECONDARY BREAKDOWN LIMIT
THERMAL LIMIT AT T C = 25 ° C
BONDING WIRE LIMIT
0.5
C. At high case temperatures, thermal limitations
will reduce the power that can be handled to values less than
the limitations imposed by second breakdown.
CURVES APPLY BELOW RATED V CEO
0.2
2N5191
2N5192
0.1
1.0
2.0
5.0
10
20
50
100
V CE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 11. Rating and Thermal Data
Active–Region Safe Operating Area
1.0
0.7
0.5
D = 0.5
q JC(max) = 3.12 ° C/W 2N5190-92
q JC(max) = 2.08 ° C/W MJE5190-92
0.3
0.2
0.2
0.1
0.1
0.07
0.05
0.05
0.02
0.03
0.02
SINGLE PULSE
0.01
0.01 0.01
0.02 0.03
0.05
0.1
0.2
0.3 0.5 1.0
2.0
3.0 5.0 10
20
50
100
200
500
1000
t, TIME OR PULSE WIDTH (ms)
Figure 12. Thermal Response
http://onsemi.com
4
0.05
0.02
150
23102684.008.png
2N5191 2N5192
DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA
t P
A train of periodical power pulses can be represented by
the model shown in Figure A. Using the model and the
device thermal response, the normalized effective transient
thermal resistance of Figure 12 was calculated for various
duty cycles.
To find
P P
P P
q JC (t), multiply the value obtained from Figure 12
by the steady state value
q JC .
Example:
The 2N5190 is dissipating 50 watts under the following
conditions: t 1 = 0.1 ms, t p = 0.5 ms. (D = 0.2).
Using Figure 12, at a pulse width of 0.1 ms and D = 0.2,
the reading of r(t 1 , D) is 0.27.
The peak rise in function temperature is therefore:
D
t 1
1/f
Figure A
DUTY CYCLE, D = t 1 f - t 1
t P
PEAK PULSE POWER = P P
T = r(t) x P P x
q JC = 0.27 x 50 x 3.12 = 42.2
C
http://onsemi.com
5
23102684.009.png
Zgłoś jeśli naruszono regulamin