Spline wielomianem 3 stopnia.pdf
(
32 KB
)
Pobierz
Algorithms for Cubic Spline Interpolation
Algorithm for nding z
i
, i = 0 : : : n
% Compute the h
i
and b
i
for i = 0 : n
1
h
i
= x
i+1
x
i
b
i
= (y
i+1
y
i
)=h
i
end
% Gaussian Elimination
u
1
= 2(h
0
+ h
1
)
v
1
= 6(b
1
b
0
)
for i = 2 : n
1
u
i
= 2(h
i1
+ h
i
)
h
i1
=u
i1
v
i
= 6(b
i
b
i1
)
h
i1
v
i1
=u
i1
end
% Back-substitution
z
n
= 0
for i = n
1 :
1 : 1
z
i
= (v
i
h
i
z
i+1
)=u
i
end
z
0
= 0
How many ops are required to compute the z
i
?
Evaluating S(x)
Remember that once you have the z
i
, you can evaluate S(x) as follows:
z
i
6h
i
(x
i+1
x)
3
+
z
i+1
6h
i
(x
x
i
)
3
+ C
i
(x
x
i
) + D
i
(x
i+1
x)
S
i
(x) =
with C
i
=
y
i+1
h
i
h
6
z
i+1
and D
i
=
y
h
i
h
6
z
i
.
This, however, is not the most ecient computational form.
We would like to use the idea of nested
multiplication, so write:
S
i
(x) = a
i
+ b
i
(x
x
i
) + c
i
(x
x
i
)
2
+ d
i
(x
x
i
)
3
Notice that this is just the innite Taylor expansion S
i
(x) =
1
P
n=1
n!
(x
x
i
)
n
S
(n)
(x
i
) (with S
(n)
1
= 0 for
i
i
n
4 since S
i
is a cubic polynomial).
Therefore,
a
i
=
S
i
(x
i
) = y
i
h
i
6
z
i+1
h
i
3
z
i
+
y
i+1
y
i
S
0
i
(x
i
) =
b
i
=
h
i
1
2
S
00
i
(x
i
) =
z
i
c
i
=
2
1
6
S
000
(x
i
) =
z
i+1
z
i
6h
i
d
i
=
i
Algorithm for Evaluating S(x)
for i = 0 : n
1
if x
x
i+1
break;
end
end
h = x
i+1
x
i
Compute a, b, c and d as above.
S = a + (x
x
i
) (b + (x
x
i
) (c + (x
x
i
)d))
How many ops are required to for each spline function evaluation?
Plik z chomika:
xyzgeo
Inne pliki z tego folderu:
Numerical_Recipes(3).pdf
(10373 KB)
Wykład 13 - Element Płytowy.pdf
(562 KB)
Wykład 14 - MES w Praktyce.pdf
(48 KB)
Aproksymacja.pdf
(656 KB)
Interpolacja - pełne zagadnienie.pdf
(2678 KB)
Inne foldery tego chomika:
Pliki dostępne do 19.01.2025
Pliki dostępne do 27.02.2021
!!! aktualne !!!
!Game Hacking Tutorial!
!Kurs MySQL!
Zgłoś jeśli
naruszono regulamin