Białka.doc

(263 KB) Pobierz
13

13.3 Białka

13.3.1 Podział białek

Białka należą do związków chemicznych typu makromolekuł, czyli wielkocząsteczkowych. Wśród składników żywych organizmów białka należą do substancji, które posiadają decydujące znaczenie dla procesów biochemicznych determinujących zjawiska życiowe.
Ze względu na złożoną i wielopostaciową strukturę molekularną, białka występują w różnych formach oraz wykazują różnorodność właściwości biologicznych. Są zasadniczym i ilościowo najobficiej występującym składnikiem komórek. W suchej masie ciała dorosłego człowieka zawartość białek sięga 56%. Białka są obecne w każdej komórce, we krwi, płynach tkankowych i mózgowo-rdzeniowych, limfie itp.
Odgrywają dużą rolę w regulacji ciśnienia osmotycznego, stężenia jonów wodorowych spełniając rolę buforów, dalej biorą udział w krzepnięciu krwi i procesach odpornościowych. Białka jako enzymy spełniają rolę katalizatorów, a jako hormony regulują przemianę materii.
Wszystkie białka zawierają azot (ok. 16%), poza tym węgiel, wodór, tlen, a często i inne pierwiastki, np. sukę, fosfor,, żelazo i miedź.
Białka dzieli się na dwie obszerne klasy;

·         białka fibrylarne (inaczej włókniste lub włókienkowe)

·         białka globuralne (inaczej białka kuliste lub kłębuszkowe)

Białka fibrylarne

Białka fibrylarne są materiałem budulcowym organizmów zwierzęcych. Głównymi białkami fibrylarnymi są:

·         keratyna (białko znajdujące się we włosach, paznokciach i mięśniach oraz rogach, kolcach i piórach zwierząt)

·         kalogen (białko znajdujące się w ścięgnach, skórze, kościach i w tkance łącznej występującej między komórkami).

Czasteczki tej grupy białek są długie i nitkowate, mają skłonność do układania się obok siebie i tworzenia włókien.
Białka globuralne
Białka globuralne są pofałdowane, dzięki czemu tworzą zwarte jednostki, które często przybierają kształty kuliste. Przedstawicielami tej grupy białek są:

·         albuminy (albumina surowicy krwi, owoalbumina występująca w białku jaja, laktoalbumina)

·         glubuliny (globulina surowicy, fibrygen krwi,globulina jaja występująca w białku jaja, laktoglobulina).

Białka globuralne pełnią cały szereg funkcji związanych z podtrzymaniem i regulacją procesów życiowych; pełnienie tych funkcji wymaga ruchliwości białek, a zatem ich rozpuszczalności. Z tych białek są zbudowane: wszystkie enzymy, wiele hormonów (insulina, tereoglobulina, przeciwciała, hemoglobina, fibrynogen).
Jak juz wspomniano, pod wzgledem chemicznym białka są wielkocząsteczkowymi polimerami o masie cząsteczkowej od 10000 do kilku milionów, np. cieżar cząsteczkowy insuliny wynosi 12000, albuminy 44000, hemoglobiny 68000, globuliny 167000, a hemocjany 6700000.
Białka posiadaja strukturę koloidalną
Oprócz wcześniej opisanego podziału białek, często za podstawę klasyfikacji bierze się właściwości fizykochemiczne. Uwzględniając właściwości fizykochemiczne białka dzielimy na:

·         białka proste albo proteiny (poddane procesowi hydrolizy rozpadaja się wyłącznie na aminokwasy)

·         białka złożone albo proteidy, których część białkowa jest związana ze składnikiem niebiałkowym zwanym grupą prostetyczną.

Białka proste - proteiny

Do białek prostych zaliczamy te, które hydrolizując dają jedynie aminokwasy. Białka proste dzielimy:

·         protaminy -posiadaja masę cząsteczkową (1000 - 80000) o przewadze zasadowych aminokwasów. Ptotaminy z kwasami dezoksyrybonukleinowymi tworzą połączenia zwane nukleoproteidami

·         albuminy - białka zwierzęce i roślinne. W skład albumin wchodzą wszystkie aminokwasy; dobrze rozpuszczają się w wodzie. Spotykamy je w białku jaja kurzego, w osoczu krwi i mleku.

·         globuliny - szeroko rozpowszechnione białko w świecie roslinnym i zwierzęcym. Spotykane są w osoczu krwi, mleku i białku jaja kurzego

·         histony - występują w jądrze komórkowym. Bogate w histony są gruczoły grasicy

·         prolaminy - białka roślinne, nierozpuszczalne w wodzie. Są składnikiem mąki. Prolaminy zawierają dużo kwasu glutaminowego

·         gluteliny - podobne do prolamin

·         keratyny - należą do nich przede wszystkim białka tkanki łącznej tworów zrogowaciałych (paznokcie, pióra i włosy)

Białka złożone - proteidy

Są to białka, w których część białkowa związana jest ze składnikiem prostetycznym. Białka złożone hydrolizują na aminokwasy, kwasy, cukry, barwniki, witaminy, itp. Do białek złożonych zaliczamy:

·         nukleoproteidy - są podstawową masą komórki i wchodzi w skład protoplazmy.

·         chromoproteidy - białka posiadające jako grupę prostetyczną substancję barwną. Do tej grupy należy hemoglobina - substancja barwna czerwonych ciałek krwi.

·         metaloproteidy - białka zawierające w części niebiałkowej grupę prostetyczną składającą się z metali, które jednak nie wchodzą w skład substancji barwnej. Do tych białek należy ferrytyna, zawierająca około 20% żelaza, które następnie dostarcza dla syntezy hemoglobiny

·         fosfoproteidy - zawieraja kwas fosforowy związany z białkiem w postaci estru. Fosfoproteidami są: kazeina mleka, witelina żółtka jaj.

·         glikoproteidy - białka zawierające w grupie prostetycznej cukrowce

·         lipoproteidy - białka, które w grupie prostetycznej zawierają lipidy. spotykane są w osoczu krwi, żółtku jaja kurzego.

13.3.2 Aminokwasy i ich reakcje chemiczne

W latach 1900-1910 niemiecki chemik Emil Fischer udowodnił, że białka zbudowane są z aminokwasów, które powiązane są w długie łańcuchy zwane łańcuchami polipeptydowymi.
Gdy łączą się dwa aminokwasy, otrzymamy dwupeptyd, gdy trzy - trójpeptyd, gdy więcej - wielopeptyd. Peptydy zawierające do 10 reszt aminokwasów nazywamy oligopeptydami, gdy zawierają więcej reszt - polipeptydami.
Peptyd powstaje przez połączenie grupy karboksylowej (-COOH) jednego aminokwasu z grupą aminową (-NH2) drugiego aminokwasu z wydzieleniem czasteczki wody.
Przykład - powstawanie dwupeptydu alanino-alanina z alaniny

Charakterystycznym wiązaniem, które powstaje przy połączeniu się dwóch i więcej ze sobą aminokwasów jest tzw. wiązanie peptydowe (-NH-CO-), zaznaczone na cząsteczce alanino-alaninie ramką.
Po utworzeniu wiązania peptydowego między dwiema cząsteczkami aminokwasów powstaje wolna grupa aminowa (-NH2) oraz karboksylowa (-COOH). Obie zatem mogą tworzyć dalsze wiązanie peptydowe z innymi aminokwasami.
Dłuższy łańcuch powstaje z połączenia kilku aminokwasów, czyli tzw. wielopeptyd, który można przedstawić następująco

W tablicy 13.1 podano główne aminokwasy występujące w białkach

Tablica 13.1

Główne aminokwasy występujące w białkach

Skrót

Nazwa zwyczajowa

Wzór strukturalny

Kwasy monoaminomonokarboksylowe

Gly

glicyna

Ala

alanina

Ser

seryna

Thr

treonina

Met

metionina

Val

walina

Ile

izoleucyna

Leu

leucyna

Phe

fenyloalanina

Tyr

tyrozyna

Cys

cysteina

 

Kwasy monoaminodikarboksylowe

Asp

kwas asparginowy

Glu

kwas glutaminowy

 

Kwasy diaminomonokarboksylowe

Arg

arginina

Lys

lizyna

 

Aminokwasy zawierające pierścienie heterocykliczne

Pro

prolina

His

histydyna

Trp

tryptofan

 

Aminokwasy zawierające grupę amidową

Asn

aspargina

Gln

glutamina

13.3.2 Aminokwasy i ich reakcje chemiczne

Z tablicy wynika, że wszystkie aminokwasy są kwasami (alfa)-aminokarboksylowymi; w dwóch przypadkach (proliny i hydroksyproliny) grupa aminowa wchodzi w skład pierścienia pirolidynowego.
Ta wspólna cecha wyznacza zbiór wspólnych właściwości chemicznych aminokwasów. Jedną z tych właściwości jest zdolność do łączenia się w długie łańcuchy poliamidowe, z których składa się białko.
Stwierdzono, że chociaż aminokwasy przedstawia się jako związki o wzorze H2NCHRCOOH zawierające w cząsteczce grupę aminową i grupę karboksylową, to niektóre ich właściwości zarówno fizyczne jak i chemiczne, nie są zgodne z taką strukturą.

·         aminokwasy, w przeciwieństwie do amin i kwasów karboksylowych, są nielotnymi krystalicznymi ciałami stałymi, które topią się z rozkładem w dość wysokiej temperaturze

·         aminokwasy są nierozpuszczalne w niepolarnych rozpuszczalnikach, takich jak eter naftowy, benzen czy eter dietylowy. W wodzie rozpuszczaja się dobrze.

·         wodne roztwory aminokwasów zachowują się podobnie jak roztwory substancji o dużym momencie dipolowym

Wszystkie te właściwości aminokwasy zawdzięczają istnieniu jonu obojnaczego.

Właściwości fizyczne - temperatura topnienia, duży moment dipolowy - są właśnie takie , jakich można oczekiwać w przypadku soli tego typu.
Pod wpływem pola elektrycznego cząsteczki takie nie wędrują do elektrod, czyli zachowują się obojętnie.
Wartość pH, przy której aminokwasy w polu elektrycznym do żadnej z elektrod nie wędrują nazywa się punktem izoelektrycznym albo izojonowym.
Przy dodawaniu jonów wodorowych (kwasu) grupa ujemna przyjmuje protony (jony wodorowe) i ulega rozładowaniu. Cząsteczka zatem przyjmuje ładunek dodatni który zlokalizowany jest przy grupie -NH3+. W tej sytuacji odczyn roztworu zmienia się na kwaśny i aminokwas wędruje w polu elektrycznym do katody, podobnie jak czynią to kationy.
Przy dodawaniu jonów wodorotlenowych OH- (z zasady) do roztworu aminokwasu znajdującego się w punkcie izoelektrycznym, ulega dysocjacji proton (jon H+) znajdujący się przy azocie grupy NH3+, który z jonem OH- tworzy cząsteczki wody. Cząsteczka aminokwasu w takiej sytuacji przyjmuje ładunek ujemny i w polu elektrycznym zachowuje się jak anion.
Można przyjąć, że aminokwas w punkcie izoelektrycznym zachowuje się podobnie jak amfoter, ponieważ reaguje zarówno z kwasami jak i zasadami.
W aminokwasach podobnie jak i w cukrach występuje zjawisko izomerii optycznej i strukturalnej. Przez analogię do cukrów należy spodziewać się wśród aminokwasów odmian L i D oraz (+) i (-).
Jest to spowodowane obecnością w cząsteczkach aminokwasów centr chiralnych (z wyjatkiem glicyny). Każdy aminokwas z wyjatkiem glicyny może istnieć w tego rodzaju odmianach izomerycznych, różniących się rozmieszczeniem w przestrzeni czterech podstawników związanych z atomem węgla (alfa).
Najbardziej zadziwiającym faktem jest to, że tylko jeden z enencjomerów każdego aminokwasu występuje w białkach roślinnych i zwierzęcych i że konfiguracja tego enancjomeru jest taka sama dla wszystkich aminokwasów. Tym enencjomerem jest zawsze odmiana L. Zatem białka po hydrolizie dają zawsze (alfa)-aminokwasy odmiany L.
Zjawisko to jest tym ciekawsze, że nie udało się dotychczas wyjśnić, dlaczego organizmy żywe budują wyłącznie cząsteczki (alfa),L-aminokwasów.

13.3.3 Struktura białek

Strukturę białek najczęściej rozpatruje się w czterech aspektach, tj.

·         struktury pierwszorzędowej - określa, w jaki sposób atomy w cząsteczkach białka są z sobą połączone wiązaniami kowalencyjnymi, czyli jak tworzą się łańcuchy. Inaczej struktura pierwszorzędowa określa kolejność aminokwasów w łańcuchu białkowym.

·         struktury drugorzędowej - określa, w jaki sposób utworzone łańcuchy są ułożone w przestrzeni, czyli jakie formy przestrzenne (spirale, arkusze albo kule) tworzą one za pomoca wiązań wodorowych, łączących różne łańcuchy lub różne części tego samego łańcucha

·         struktura trzeciorzędowa - określa najbardziej korzystne uporządkowanie przestrzenne poszczególnych części cząsteczki białka z punktu widzenia energetycznego; zależy od oddziaływań między łańcuchami bocznymi jednej lub większej liczby makrocząsteczek.

·         struktura czwartorzędowa - określa sposób przestrzennego powiązania kilku cząsteczek w jedną złożoną strukturę białka.

Struktura pierwszorzędowa

Jak wiemy białka są produktami kondensacji wielu aminokwasów. Z dotychczasowych doświadczeń wynika, że aminokwasy nie są połączone między sobą w sposób przypadkowy, lecz kolejność ich jest specyficzna i charakterystyczna dla określonego białka. Ta uprządkowana kolejność nazywana jest sekwencją aminokwasów w białku. Sekwencja aminokwasów może na przykład wyglądać następująco:

H2N Tyr-Tre-Wal-Asp-Leu-Gli-Gli-Cys-His COOH

Białka zbudowane są z łańcuchów peptydowych w którym do co trzeciego atomu jest przyłączony łańcuch boczny (R1, R2, R3, R4,...).

Struktura łańcucha bocznego zależy od reszty określonego amionokwasu, np. w przypadku glicyny jest to atom - H, alaniny - grupa (-CH3), waliny - grupa (-CH(CH3)2), itd
Niektóre z tych bocznych łańcuchów zawierają grupy zasadowe, np. grupę -NH2 i grupy kwasowe -COOH (patrz tablica 13.1).
Ze względu na obecność tych kwasowych i zasadowych łańcuchów bocznych wzdłuż łańcucha peptydowego rozmieszczone są grupy naładowane dodatnio lub ujemnie.
I właśnie ta charakterystyczna dla określonego białka sekwencja łańcuchów bocznych, nadaje mu charakterystyczne właściwości
Łańcuchy boczne wywierają wpływ na właściwości białek nie tylko dzięki swej kwasowości lub zasadowości, ale również poprzez inne właściwości chemiczne, a nawet poprzez wielkość i kształt. Na przykład obecność grupy wodorotlenowej (-OH) i grupy tiolowej (-SH) przyczynia się do reakcji tworzenia estrów.
Niektóre cząsteczki białek zawierają fragmenty niepeptydowe (nazywane grupą prostetyczną). Grupa prostetyczna jest ściśle powiązana ze specyficzną biologiczną funkcją białka.
Na przykład grupą prostetyczną hemoglobiny jest hem

Jak wynika ze wzoru, hem zawiera atom żelaza związany z układem pirolowym, znanym jako porfina. To właśnie utworzenie odwracalnego kompleksu tlen-hem umożliwia hemoglobinie przenoszenie tlenu z płuc do tkanek.
Tlenek węgla tworzy podobny, ale bardziej trwały kompleks, dzięki czemu wiąże on hemoglobinę uniemożliwiając transport tlenu, co powoduje śmierć.
Hem jest połączony z peptydowym fragmentem białka (globiną) w wyniku chelatowania atomu żelaza przez histydynowe atomy azotu białka, a także za pomocą wiązań wodorowych oraz sił van der Waalsa działających pomiędzy hydrofobowymi fragmentami dwóch cząsteczek.

Struktura drugorzędowa

Termin "struktura drugorzędowa" określa wzajemne, przestrzenne ułożenie aminokwasów w łańcuchu białkowym o określonej sekwencji. Badania prowadzone metodami rentgenowskimi udowodniły, że nie wszystkie możliwe struktury łańcucha białkowego są jednakowo cenne pod wzgledem trwałości.
Najtrwalsze muszą zawierać maksymalną liczbę wiązań wodorowych między grupami karbonylowymi -C=O i grupami -N-H występującymi w wiązaniu peptydowym. Wiązania wodorowe będą silnie stabilizować strukturę, jednakże aby mogły powstać, odpowiednie grupy muszą znaleźć się w odległości oddziaływań wodorowych.
W przypadku białek z grupy skleroproteidów trwała struktura osiągana jest dzięki oddziaływaniom wodorowym między dwoma łańcuchami białkowymi biegnącymi równolegle do siebie. Tworzą one wtedy tzw. strukturę "pofałdowanej kartki (harmonijki)". Taka struktura nazywana jest również strukturą beta.
To pofałdowanie powstaje w wyniku ściągnięcia łańcuchów peptydowych, przez co zmienia się geometria wiązania peptydowego aminokwasu z płaskiej na pofałdowaną (rysunek 13.4). Uzykujemy wtedy bardziej korzystną strukture do rozmieszczenia małych lub średnich łańcuchów bocznych.
Na rysunku 13.4 przedstawiono płaskie wiązanie peptydowe w kolorze czarnym, natomiast kolorem różowym efekt ściągnięcia łańcuchów peptydowych w strukturze beta.

Rys. 13.4 ...

Zgłoś jeśli naruszono regulamin