EBOOK_ARTIFICIAL_NEURAL_NET.PDF

(4996 KB) Pobierz
nnets_pdf.book
Neural Network Toolbox
For Use with MATLAB ®
Howard Demuth
Mark Beale
Comput ation
Visualiz ation
Program ming
User’s Guide
Version 4
53263101.007.png
How to Contact The MathWorks:
508-647-7000
Phone
508-647-7001
Fax
The MathWorks, Inc.
Mail
3AppleHillDrive
Natick, MA 01760-2098
http://www.mathworks.com Web
ftp.mathworks.com
Anonymous FTP server
comp.soft-sys.matlab
Newsgroup
support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com
Sales, pricing, and general information
COPYRIGHT 1992 - 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc .
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.
MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: June 1992 First printing
April 1993 Second printing
January 1997 Third printing
July 1997 Fourth printing
January 1998 Fifth printing Revised for Version 3 (Release 11)
September 2000 Sixth printing Revised for Version 4 (Release 12)
Neural Network Toolbox User’s Guide
Ó
53263101.008.png 53263101.009.png 53263101.010.png 53263101.001.png 53263101.002.png 53263101.003.png
Contents
Preface
Explaining Neural Networks ........................... xvi
Basic Chapters ...................................... xviii
Mathematical Notation for Equations and Figures ....... xix
BasicConcepts ....................................... xix
Language ........................................... xix
WeightMatrices ..................................... xix
LayerNotation....................................... xix
FigureandEquationExamples .......................... xx
Mathematics and Code Equivalents .................... xxi
Neural Network Design Book ......................... xxii
Acknowledgments ................................... xxiii
Related Products List ................................. xxv
1
Introduction
Getting Started ....................................... 1-2
BasicChapters....................................... 1-2
HelpandInstallation ................................. 1-2
Neural Network Applications .......................... 1-3
ApplicationsinthisToolbox ............................ 1-3
BusinessApplications ................................. 1-3
Aerospace ........................................... 1-3
i
53263101.004.png
Automotive .......................................... 1-3
Banking ............................................ 1-3
CreditCardActivityChecking .......................... 1-3
Defense ............................................. 1-4
Electronics .......................................... 1-4
Entertainment ....................................... 1-4
Financial ............................................ 1-4
Industrial ........................................... 1-4
Insurance ........................................... 1-4
Manufacturing ....................................... 1-4
Medical ............................................. 1-5
OilandGas.......................................... 1-5
Robotics............................................. 1-5
Speech .............................................. 1-5
Securities ........................................... 1-5
Telecommunications . . . . . . ............................ 1-5
Transportation ....................................... 1-5
Summary . . ......................................... 1-5
2
Neuron Model and Network Architectures
Neuron Model ........................................ 2-2
SimpleNeuron ....................................... 2-2
TransferFunctions.................................... 2-3
NeuronWithVectorInput.............................. 2-5
Network Architectures ................................ 2-8
ALayerofNeurons ................................... 2-8
MultipleLayersofNeurons............................ 2-11
Data Structures ...................................... 2-14
Simulation With Concurrent Inputs in a Static Network . . . . 2-14
Simulation With Sequential Inputs in a Dynamic Network . . 2-15
Simulation With Concurrent Inputs in a Dynamic Network . 2-17
Training Styles ...................................... 2-20
ii
Contents
53263101.005.png
Incremental Training (of Adaptive and Other Networks) . . . . 2-20
BatchTraining ...................................... 2-22
Summary ............................................ 2-27
FiguresandEquations................................ 2-28
3
Perceptrons
Introduction .......................................... 3-2
ImportantPerceptronFunctions......................... 3-3
Neuron Model ........................................ 3-4
Perceptron Architecture ............................... 3-6
Creating a Perceptron (newp) .......................... 3-7
Simulation(sim)...................................... 3-8
Initialization(init) .................................... 3-9
Learning Rules ...................................... 3-12
Perceptron Learning Rule (learnp) .................... 3-13
Training (train) ...................................... 3-16
Limitations and Cautions ............................. 3-21
OutliersandtheNormalizedPerceptronRule ............. 3-21
Graphical User Interface ............................. 3-23
IntroductiontotheGUI ............................... 3-23
CreateaPerceptronNetwork(nntool) ................... 3-23
TrainthePerceptron ................................. 3-27
ExportPerceptronResultstoWorkspace ................. 3-29
ClearNetwork/DataWindow .......................... 3-30
ImportingfromtheCommandLine ..................... 3-30
iii
53263101.006.png
Zgłoś jeśli naruszono regulamin