slyt309.pdf

(705 KB) Pobierz
Power Management
Texas Instruments Incorporated
Designing DC/DC converters based on
SEPIC topology
By Jeff Falin
Senior Applications Engineer
Introduction
The single-ended primary-inductance converter (SEPIC)
is a DC/DC-converter topology that provides a positive
regulated output voltage from an input voltage that varies
from above to below the output voltage. This type of con-
version is handy when the designer uses voltages (e.g.,
12 V) from an unregulated input power supply such as a
low-cost wall wart. Unfortunately, the SEPIC topology is
difficult to understand and requires two inductors, making
the power-supply footprint quite large. Recently, several
inductor manufacturers began selling off-the-shelf coupled
inductors in a single package at a cost only slightly higher
than that of the comparable single inductor. The coupled
inductor not only provides a smaller footprint but also, to
get the same inductor ripple current, requires only half
the inductance required for a SEPIC with two separate
inductors. This article explains how to design a SEPIC
converter with a coupled inductor.
Basic operation
Figure 1 shows a simple circuit diagram of a SEPIC con-
verter, consisting of an input capacitor, C IN ; an output
capacitor, C OUT ; coupled inductors L1a and L1b; an AC
coupling capacitor, C P ;apowerFET,Q1;andadiode,D1.
Figure 2 shows the SEPIC operating in continuous con-
ductionmode(CCM).Q1isoninthetopcircuitandoffin
the bottom circuit.
To understand the voltages at the various circuit nodes,
itisimportanttoanalyzethecircuitatDCwhenQ1isoff
and not switching. During steady-state CCM, pulse-width-
modulation (PWM) operation, and neglecting ripple voltage,
Figure 1. Simple circuit diagram of
SEPIC converter
L1a
C P
D1
V IN
V OUT
Q1
C IN
L1b
C OUT
Figure 2. SEPIC during CCM operation when Q1 is
on (top) and off (bottom)
+
V L1a
L1a
C P
+–
V IN
V OUT
+
I L1a
+
I L1b
C IN
L1b
V L1b
C OUT
+
V L1a
L1a
D1
C P
+–
V IN
V OUT
+
I L1a
+
I L1b
C IN
C OUT
L1b
V L1b
18
High-Performance Analog Products
4Q 2008
Analog Applications Journal
917562389.178.png 917562389.189.png 917562389.200.png 917562389.210.png 917562389.001.png 917562389.011.png 917562389.022.png 917562389.033.png 917562389.044.png 917562389.054.png 917562389.065.png 917562389.076.png 917562389.087.png 917562389.098.png 917562389.109.png 917562389.120.png 917562389.131.png 917562389.141.png 917562389.142.png 917562389.143.png 917562389.144.png 917562389.145.png 917562389.146.png 917562389.147.png 917562389.148.png 917562389.149.png 917562389.150.png 917562389.151.png 917562389.152.png 917562389.153.png 917562389.154.png 917562389.155.png 917562389.156.png 917562389.157.png 917562389.158.png 917562389.159.png 917562389.160.png 917562389.161.png 917562389.162.png 917562389.163.png 917562389.164.png 917562389.165.png 917562389.166.png 917562389.167.png 917562389.168.png 917562389.169.png 917562389.170.png 917562389.171.png 917562389.172.png 917562389.173.png 917562389.174.png 917562389.175.png 917562389.176.png 917562389.177.png 917562389.179.png 917562389.180.png 917562389.181.png 917562389.182.png 917562389.183.png 917562389.184.png 917562389.185.png 917562389.186.png 917562389.187.png 917562389.188.png 917562389.190.png 917562389.191.png 917562389.192.png 917562389.193.png 917562389.194.png 917562389.195.png 917562389.196.png 917562389.197.png 917562389.198.png 917562389.199.png 917562389.201.png 917562389.202.png 917562389.203.png 917562389.204.png 917562389.205.png
Texas Instruments Incorporated
Power Management
capacitor C P is charged to the input voltage,
V IN . Knowing this, we can easily determine
the voltages as shown in Figure 3.
WhenQ1isoff,thevoltageacrossL1b
must be V OUT . Since C IN is charged to V IN ,
thevoltageacrossQ1whenQ1isoffisV IN +
V OUT , so the voltage across L1a is V OUT . When
Q1ison,capacitorC P , charged to V IN , is con-
nected in parallel with L1b, so the voltage
across L1b is –V IN .
The currents flowing through various cir-
cuit components are shown in Figure 4. When
Q1ison,energyisbeingstoredinL1afrom
the input and in L1b from C P .WhenQ1turns
off, L1a’s current continues to flow through
C P and D1, and into C OUT and the load. Both
C OUT and C P get recharged so that they can
provide the load current and charge L1b,
respectively,whenQ1turnsbackon.
Duty cycle
Assuming 100% efficiency, the duty cycle, D,
for a SEPIC converter operating in CCM is
given by
Figure 3. SEPIC component voltages during CCM
+ V
V
IN(max)
OUT
Q1
ON
Q1
OFF
V Q1
V OUT
V L1b
–V IN
V OUT
V L1a
V IN
(V
< V)
IN
OUT
V IN
V L1a
V OUT
(V
> V)
IN
OUT
Figure 4. SEPIC component currents during CCM
V V
VV
+
OUT WD
IN OUT WD
D
=
,
(1)
T S
+
+
V
V
+ V
IN
OUT
where V FWD is the forward voltage drop of the
Schottky diode. This can be rewritten as
V Q1
D × T S
(1–D) × T S
D
D
V
+
V
I
OUT WD
IN
IN
OUT
=
=
.
(2)
I Q1(Peak)
1−
V
I
I+ l
IN
OUT
l Q1
D(max) occurs at V IN(min) , and D(min) occurs
at V IN(max) .
Selecting passive components
OneofthefirststepsindesigninganyPWM
switching regulator is to decide how much
inductor ripple current, ∆I L , to allow. Too
much increases EMI, while too little may
result in unstable PWM operation. A rule of
thumb is to use 20 to 40% of the input cur-
rent, as computed with the power-balance
equation,
I+ l
IN
OUT
l D1
I IN
l C P
–I OUT
I
I IN
IN
∆I
= × = ×
30
%
30
% ′.
I
(3)
l L1a
η
L
IN
In this equation, I IN from Equation 2 is divided
by the estimated worst-case efficiency, η, at
V IN(min) and I OUT(max) for a more accurate
estimate of the input current, I IN ′.
In an ideal, tightly coupled inductor, with
each inductor having the same number of
windings on a single core, the mutual induc-
tance forces the ripple current to be split
equally between the two coupled inductors.
In a real coupled inductor, the inductors do
I OUT
I L1b
19
Analog Applications Journal
4Q 2008
High-Performance Analog Products
917562389.206.png 917562389.207.png 917562389.208.png 917562389.209.png 917562389.211.png 917562389.212.png 917562389.213.png 917562389.214.png 917562389.215.png 917562389.216.png 917562389.217.png 917562389.218.png 917562389.219.png 917562389.220.png 917562389.002.png 917562389.003.png 917562389.004.png 917562389.005.png 917562389.006.png
Power Management
Texas Instruments Incorporated
not have equal inductance and the ripple currents will not
be exactly equal. Regardless, for a desired ripple-current
value, the inductance required in a coupled inductor is
estimated to be half of what would be needed if there
were two separate inductors, as shown in Equation 4:
capacitance, but not too much ESR, to meet the applica-
tion’s requirement for output voltage ripple, ∆V RPL :
I
×
×
D
(max)
OUT
OUT W
∆V
RPL
C
f
(min)
(6)

ESRI
+
I
V
×
D
(max)
LaPeak
1
(
)
LbPeak
1
(
)
1
2
IN
(min)
La
1
(min)
=
Lb
1
(min)
= ×
(4)
I
×
f
If very low-ESR (e.g., ceramic) output capacitors are used,
the ESR can be ignored and the equation reduces to
L W
(min)
To account for load transients, the coupled inductor’s
saturation current rating needs to be at least 20% higher
than the steady-state peak current in the high-side induc-
tor, as computed in Equation 5:
I D
Vf
×
×
(max)
OUT
RPL W
(7)
C
,
OUT
(min)
where f SW(min) is the minimum switching frequency. A
minimum capacitance limit may be necessary to meet the
application’s load-transient requirement.
The output capacitor must have an RMS current rating
greater than the capacitor’s RMS current, as computed in
Equation 8:
I
30
2
%
L
(5)
I
=+=
I
I
1
+
LaPeak
1
(
)
IN
IN
2
Note that I L1b(Peak) = I OUT + ∆I L /2, which is less than
I L1a(Peak) .
Figure 5 breaks down the capacitor ripple voltage as
relatedtotheoutput-capacitorcurrent.WhenQ1ison,
the output capacitor must provide the load current.
Therefore, the output capacitor must have at least enough
D
D
(max)
(max)
I
=
I
×
(8)
C
OUT (
MS OUT
)
1
Figure 5. Ripple voltage of output capacitor
T S
I IN
I C OUT
D × T S
(1–D) × T S
–I OUT
( I
)
+ I
–I
ESR
L1a
L1b
OUT
V RPL_ESR
V× I
ESR
OUT
V RPL_C OUT
V= V
+
V
RPL
RPL_ESR
RPL_C OUT
V RPL
V OUT_AC
20
High-Performance Analog Products
4Q 2008
Analog Applications Journal
917562389.007.png 917562389.008.png 917562389.009.png 917562389.010.png 917562389.012.png 917562389.013.png 917562389.014.png 917562389.015.png 917562389.016.png 917562389.017.png 917562389.018.png 917562389.019.png 917562389.020.png 917562389.021.png 917562389.023.png 917562389.024.png 917562389.025.png 917562389.026.png 917562389.027.png 917562389.028.png 917562389.029.png 917562389.030.png 917562389.031.png 917562389.032.png 917562389.034.png 917562389.035.png 917562389.036.png 917562389.037.png 917562389.038.png 917562389.039.png 917562389.040.png 917562389.041.png 917562389.042.png 917562389.043.png 917562389.045.png
Texas Instruments Incorporated
Power Management
The input capacitor sees fairly low ripple currents due
to the input inductor. Like a boost converter, the input-
current waveform is continuous and triangular; therefore,
the input capacitor needs the RMS current rating,
The output diode must be able to handle the same peak
currentasQ1,I Q1(Peak) . The diode must also be able to
withstandareversevoltagegreaterthanQ1’smaximum
voltage (V IN[max] + V OUT + V FWD ) to account for transients
and ringing. Since the average diode current is the output
current, the diode’s package must be capable of dissipat-
ing up to P D_D1 = I OUT × V FWD .
Design example
A DC/DC converter is needed that can provide 12 V at
300 mA (maximum) with 90% efficiency from an input
voltage ranging from 9 to 15 V. We select the TPS61170,
which has a 38-V switch, a minimum switch-current limit of
0.96 A, and a 1.2-MHz nominal (1.0-MHz minimum) switch-
ing frequency. The maximum output voltage ripple allowed
is 100 mV PP . The maximum ambient temperature is 70ºC,
and we will use a high-K board. In Reference 1, Ray Ridley
explains how to compensate the control loop at the link.
Table 1 summarizes the computations using the equa-
tions given earlier. Equations 8 through 11 are not shown
because ceramic capacitors with low ESR, high RMS cur-
rent ratings, and the appropriate voltage ratings were
used. Figure 6 shows the schematic. Figure 7 shows the
design’sefficiencywithaCoiltronicsDRQ73inductorand
a Wurth 744877220. Figure 8 shows the device operation
in deep CCM.
References
1. Ray Ridley. (Nov. 2006). Analyzing the SEPIC
converter. Power Systems Design Europe [Online].
2. Robert W. Erickson and Dragan Maksimovic,
Fundamentals of Power Electronics , 2nd ed. (New
York: Springer Science+Business Media LLC, 2001).
3. John Betten and Robert Kollman. (Jan. 25, 2006). No
need to fear: SEPIC outperforms the flyback. Planet
Analog [Online].Available: http://www.planetanalog.com/
Related Web sites
=
12
I
L
I
.
(9)
CRMS
IN (
)
The coupling capacitor, C P , sees large RMS current rela-
tive to the output power:
1
(max)
(max)
D
(10)
I
I
CRMS
P (
)
IN
D
From Figure 3, the maximum voltage across C P is
V Q1(max) – V L1b(max) = V IN + V OUT – V OUT = V IN .
The ripple across C P is
I
D
Cf
×
(max) .
OUT
P W
∆V
=
(11)
C
×
P
Selecting active components
ThepowerMOSFET,Q1,mustbecarefullyselectedso
that it can handle the peak voltage and currents while
minimizing power-dissipation losses. The power FET’s
current rating (or current limit for a converter with an
integrated FET) will determine the SEPIC converter’s
maximum output current.
AsshowninFigure3,Q1seesamaximumvoltageof
V IN(max) + V OUT .AsshowninFigure4,Q1musthavea
peak-current rating of
I
=
I
+
I
=+ +
I
I
I
.
(12)
QPeak
1
(
)
L aPeak
1
(
)
LbPeak
1
(
)
IN UT
L
At the ambient temperature of interest, the FET’s power-
dissipation rating must be greater than the sum of the
conductive losses (a function of the FET’s r DS[on] ) and the
switching losses (a function of the FET’s gate charge) as
given in Equation 13:
2
P
=
I
×
r
×
D
(max)
+
I
DQ QRMS
_
1
1
(
)
DS on
(
)
QPeak
1
(
)
(13)
t
+
t
Rise
Fall
×
×
V
+
V
+
V
×
f
,
IN
(min)
OUT W
D
SW
2
where t Rise istherisetimeonthegateofQ1andcanbe
computedasQ1’sgate-to-draincharge,Q GD , divided by the
converter’s gate-drive current, I DRV .Q1’sRMScurrentis
I
D
IN
(14)
I
=
.
QRMS
1(
)
(max)
21
Analog Applications Journal
4Q 2008
High-Performance Analog Products
917562389.046.png 917562389.047.png 917562389.048.png 917562389.049.png 917562389.050.png 917562389.051.png 917562389.052.png 917562389.053.png 917562389.055.png 917562389.056.png 917562389.057.png 917562389.058.png 917562389.059.png 917562389.060.png
Power Management
Texas Instruments Incorporated
Table 1. Computations for SEPIC design example
DESIGN EQUATION
COMPUTATION
SELECTED COMPONENT/RATING
Passive Components
12 05
129
V V
VV
+
++ =
.
(1)
D
(max)
=
058
.
N/A
.
5
V
30% = 0.3 A12 V
9 V
×
×
LI = ×
I
×
30% =0.44 A
×
30% =0.13 A
(2) and (3)
N/A
90%
1
2
9 V0.58
0.13 A1 MHz =20.1 µH
×
×
L1a = L1b =
×
(4)
Coiltronics DRQ73: 22 µH, 1.6 A, and 110 m W
= 0.44 A + 30%
2
×
I
=0.51A
(5)
L1a(Peak)
0.3 A .58
0.1V
×
×
C
OUT
1 MHz =1.74 µF
(7)
4.7-µF, 25-V X5R ceramic
Active Components
(12)
I
= 0.44 A+0.3 A+0.13 A=+0.87 A
Q1(Peak)
= 0.44 A
0.58
I
=0.58 A
(14)
TPS61170 with 0.96-A-rated switch. Capable
of dissipating 825 mW at 70ºC.
Q1(RMS)
2 ×
P
(0.58 A)
0.3
×
0.58 +0.87 A
D_Q1
(13)
×
(9 V+12 V+0.5 V)
× ×
10 ns
1
MHz=246 mW
P
0.3 A .5 V=150 mW
×
MBA140: 1 A, 40 V
D_D1
Figure 6. SEPIC design with 9- to 15-V V IN and 12-V V OUT at 300 mA
C4
1 µF
L1a
22 µH
V=
12 V at 300 mA
V=
9 to 15 V
OUT
IN
D1
C
4.7 µF
L1b
22 µH
C
4.7 µF
IN
OUT
R1
87.6 k
TPS61170
VIN
SW
CTRL
FB
4.99 k
R2
10 k
COMP
GND
C3
22 nF
22
High-Performance Analog Products
4Q 2008
Analog Applications Journal
917562389.061.png 917562389.062.png 917562389.063.png 917562389.064.png 917562389.066.png 917562389.067.png 917562389.068.png 917562389.069.png 917562389.070.png 917562389.071.png 917562389.072.png 917562389.073.png 917562389.074.png 917562389.075.png 917562389.077.png 917562389.078.png 917562389.079.png 917562389.080.png 917562389.081.png 917562389.082.png 917562389.083.png 917562389.084.png 917562389.085.png 917562389.086.png 917562389.088.png 917562389.089.png 917562389.090.png 917562389.091.png 917562389.092.png 917562389.093.png 917562389.094.png 917562389.095.png 917562389.096.png 917562389.097.png 917562389.099.png 917562389.100.png 917562389.101.png 917562389.102.png 917562389.103.png 917562389.104.png 917562389.105.png 917562389.106.png 917562389.107.png 917562389.108.png 917562389.110.png 917562389.111.png 917562389.112.png 917562389.113.png 917562389.114.png 917562389.115.png 917562389.116.png 917562389.117.png 917562389.118.png 917562389.119.png 917562389.121.png 917562389.122.png 917562389.123.png 917562389.124.png 917562389.125.png 917562389.126.png 917562389.127.png 917562389.128.png 917562389.129.png 917562389.130.png 917562389.132.png 917562389.133.png 917562389.134.png 917562389.135.png 917562389.136.png 917562389.137.png 917562389.138.png 917562389.139.png 917562389.140.png
Zgłoś jeśli naruszono regulamin