Uninterruptible Power Supply Reference Design--30450c.pdf

(773 KB) Pobierz
M
PICREF-1
Uninterruptible Power Supply Reference Design
INTRODUCTION
PICREF-1 OVERVIEW
At times, power from a wall socket is neither clean nor
uninterruptible. Many abnormalities such as blackouts,
brownouts, spikes, surges, and noise can occur. Under
the best conditions, power interruptions can be an
inconvenience. At their worst, they can cause loss of
data in computer systems or damage to electronic
equipment.
It is the function of an Uninterruptible Power Supply
(UPS) to act as a buffer and provide clean, reliable
power to vulnerable electronic equipment. The basic
concept of a UPS is to store energy during normal
operation (through battery charging) and release
energy (through DC to AC conversion) during a power
failure.
UPS systems are traditionally designed using analog
components. Today these systems can integrate a
microcontroller with AC sine wave generation, offering
the many benefits listed below.
The Microchip Technology PICREF-1 UPS Reference
Design offers a ready-made uninterruptible power sup-
ply solution with the flexibility of a microcontroller.
The PIC17C43 microcontroller handles all the control
of the UPS system. The PIC17C43 is unique because
it provides a high performance and low cost solution not
found in other microcontrollers.
The PIC17C43 PWM controls an inverter whose out-
put, when filtered, results in a sinusoidal AC output
waveform. Fault signaling can be initiated internal or
external to the PIC17C43 depending on the type of
fault. A fault will disable the entire inverter. The output
voltage and current will be monitored by the PIC17C43
to make adjustments “real-time” to correct for DC offset
and load changes.
The PIC17C43 controls all module synchronization as
well as inverter control and feedback. The PIC17C43
uses zero crossing for synchronization of input voltage/
phase to output voltage/phase. All internal module syn-
chronization is handled by the PIC17C43.
The control algorithms and software are written in C for
maintainability and transportability.
PIC17C43 Microcontroller Benefits
• High Quality Sine Wave - High throughput allows
for high quality output
• Flexibility - core control features and operations
can be changed with software modifications only
• Transportability of Design
• Variable Loop Response
• Digital Filtering
• Parts and Complexity Reduction
• Peripheral Integration
• Ease of Interfacing
• Testability
• Time to Market
PICREF-1 Key Features
• True UPS Topology
• True Sinusoidal Output
• Point-to-Point Output Correction
• 1400 VA Rating
• 120/240 V Input
Information contained in this publication is intended through suggestion only and may be superseded by updates. No
representation or warranty is given and no liability is assumed by Microchip Technology Inc. with respect to the accu-
racy or use of such information, or infringement of patents arising from such use or otherwise. It is the responsibility
of each user to ensure that each UPS is adequately designed, safe, and compatible with all conditions encountered
during its use. “Typical” parameters can and do vary in different applications. All operating parameters, including
“Typicals”, must be validated for each customer application by the customer's technical experts. Use of Microchip's
products as critical components in life support systems is not authorized except with express written approval by
Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.
ã
1997 Microchip Technology Inc.
DS30450C-page 1
787173081.215.png 787173081.226.png 787173081.237.png 787173081.248.png 787173081.001.png 787173081.012.png
 
PICREF-1
TABLE OF CONTENTS
ACKNOWLEDGMENTS
Project Lead Engineer:
Robert Schreiber, Microchip Technology
Reference Design Documentation:
Beth McLoughlin, Microchip Technology
System and Code Development:
Airborne Power (Consultants)
Guy Gazia (guyg@airbornepower.com),
David Karipides (davek@airbornepower.com),
Terry Allinder
DS30450C-page 2
1997 Microchip Technology Inc.
ã
787173081.033.png 787173081.044.png
PICREF-1
SYSTEM OVERVIEW
The OR’d DC bus voltage is fed into the free running
chopper which both isolates the DC bus from the
H-Bridge inverter and doubles the DC voltage for the
inverter to operate at 120 or 240 volts. The output of the
chopper is filtered to remove switching noise and then
fed into the H-Bridge.
The PIC17C43 microcontroller controls the inverter by
driving the H-bridge through Hardware Protection cir-
cuitry and Insulated Gated Bipolar Transistor (IGBT)
drivers. The output of the H-bridge is filtered and drives
the load with an AC sine wave that is synchronized to
the input AC voltage.
An A/D converter provides feedback to the PIC17C43
for output monitoring.
All module synchronization, control, and fault detection
are handled through the PIC17C43.
The power flow for the PICREF-1 system is shown in
Figure 1 . The Uninterruptible Power Supply (UPS) is
either supplying power based on the input power, if the
unit is plugged in, or based on the batteries.
Power Flow
When available, the input power is filtered for common
mode noise and is protected from surges/spikes by
input power protection circuitry. The power then goes
into the power factor correction (PFC) module which
forces the input current to be sinusoidal so that power
utilization is more efficient. The PFC module also recti-
fies the input AC power to produce voltage-regulated
DC power which is used by the rest of the functional
modules.
This rectified AC power is OR’d through diodes with the
DC voltage generated from the battery boost circuit.
The battery boost voltage is set slightly lower than the
rectified AC input voltage so that, under normal condi-
tions, the rectified AC input power provides power to
the load. Once the voltage from the rectified AC input
source drops below the battery boost DC voltage, the
power is drawn from the battery boost module. In this
mode the battery charger is turned off so as not to
cause an additional load on the battery (i.e., so the bat-
tery is not charging itself).
FIGURE 1:
PICREF-1 UNINTERRUPTIBLE POWER SUPPLY (UPS) BLOCK DIAGRAM
Power Flow
Current Sense
Charge Control
A/D
Voltage Sense
BBC
Sync
Battery &
Battery
Charger
Battery
Boost
Circuit
Enable
PWM
Hardware
Protection
PIC17C43
Pos_Neg
Fault
Zero
Crossing
Inverter
Fault
Inverter
Control
PFC
Sync
IGBT
Drivers
Input Power
120/240 V
50/60 Hz
Output Power
120/240 V
50/60 Hz
Chopper
Sync
Power
Factor
Correction &
Rectification
Input
Power
Protection
Free
Running
Chopper
Output
Filtering
H-Bridge
(Inverter)
1997 Microchip Technology Inc.
DS30450C-page 3
ã
787173081.055.png 787173081.066.png 787173081.077.png 787173081.088.png 787173081.099.png 787173081.110.png 787173081.121.png 787173081.131.png 787173081.142.png 787173081.153.png 787173081.164.png 787173081.175.png 787173081.182.png 787173081.183.png 787173081.184.png 787173081.185.png 787173081.186.png 787173081.187.png 787173081.188.png 787173081.189.png 787173081.190.png 787173081.191.png 787173081.192.png 787173081.193.png 787173081.194.png 787173081.195.png 787173081.196.png 787173081.197.png 787173081.198.png 787173081.199.png 787173081.200.png 787173081.201.png 787173081.202.png 787173081.203.png 787173081.204.png 787173081.205.png 787173081.206.png 787173081.207.png 787173081.208.png 787173081.209.png 787173081.210.png 787173081.211.png 787173081.212.png 787173081.213.png 787173081.214.png 787173081.216.png 787173081.217.png 787173081.218.png 787173081.219.png 787173081.220.png 787173081.221.png 787173081.222.png 787173081.223.png 787173081.224.png 787173081.225.png 787173081.227.png 787173081.228.png 787173081.229.png 787173081.230.png 787173081.231.png 787173081.232.png 787173081.233.png 787173081.234.png 787173081.235.png 787173081.236.png 787173081.238.png 787173081.239.png 787173081.240.png 787173081.241.png 787173081.242.png 787173081.243.png 787173081.244.png 787173081.245.png 787173081.246.png 787173081.247.png 787173081.249.png 787173081.250.png 787173081.251.png 787173081.252.png 787173081.253.png
 
PICREF-1
Inverter Operation
As long as none of the out-of-saturation signals
(Q9/Q10/Q11/Q12 OC Alarm) are LOW, the power
stage can be enabled. When the PIC17C43 is first pow-
ered up, the ENABLE line (PORTC, bit0) will be in a
high impedance state. A pull-down resistor keeps the
ENABLE line held LOW so that any spurious signals
which may be generated while the system is initializing
will not drive the H-Bridge. If any of the out-of-satura-
tion signals go LOW, the FAULT signal goes HIGH,
reporting to the PIC17C43 that an external fault
occurred. This will disable the H-Bridge.
The inverter may be re-enabled by cycling the ENABLE
line LOW and then HIGH to reset the flip-flop and allow
the PIC17C43 to drive the H-Bridge again.
The PIC17C43 microcontroller and hardware protec-
tion circuits are found on the PICREF-1 Inverter Control
Card. IGBT driver circuits are found on the Inverter
Drive Card. Schematics for these cards can be found in
The H-bridge circuit works by generating the separate
positive and negative cycles needed for sine wave gen-
eration. The PIC17C43 controls all signals to the hard-
ware protection circuitry and IGBT drivers and thus
controls the generation of the sine wave ( Figure 2 ).
Software Fault / No Enable
Driving the FAULT HIGH will disable the inverter’s
power stage.
Hardware Fault
The hardware protection logic automatically disables
the inverter’s power stage in the event any of the IGBT’s
have gone out of saturation, i.e., an external short was
placed on the H-Bridge which was so severe that an
appreciable voltage was developed across one of the
switches that was on. This feature prevents a short
from immediately destroying the switching devices.
FIGURE 2:
INVERTER OPERATION
Q9 Drive
Q9_G
Q10 Drive
Q10_G
ENABLE
Q11 Drive
Q11_G
PWM
Q12 Drive
PIC17C43
Hardware
Protection
IGBT
Drivers
Q12_G
POS_NEG
Q9 OC Alarm
Q9_C
FAULT
Q10 OC Alarm
Q10_C
Q11 OC Alarm
Q11_C
Q12 OC Alarm
Q12_C
DCBus
Simplified
H-Bridge
(Inverter)
Q10_C
Q9_C
Q10_G
Q9_G
Q9
Q10
AC Output
L1
AC HI
Output
Filtering
AC LO
L2
Q12_C
Q11_C
Q11
Q12_G
Q12
Q11_G
DS30450C-page 4
1997 Microchip Technology Inc.
ã
787173081.254.png 787173081.255.png 787173081.256.png 787173081.257.png 787173081.002.png 787173081.003.png 787173081.004.png 787173081.005.png 787173081.006.png 787173081.007.png 787173081.008.png 787173081.009.png 787173081.010.png 787173081.011.png 787173081.013.png 787173081.014.png 787173081.015.png 787173081.016.png 787173081.017.png 787173081.018.png 787173081.019.png 787173081.020.png 787173081.021.png 787173081.022.png 787173081.023.png 787173081.024.png 787173081.025.png 787173081.026.png 787173081.027.png 787173081.028.png 787173081.029.png 787173081.030.png 787173081.031.png 787173081.032.png 787173081.034.png 787173081.035.png 787173081.036.png 787173081.037.png 787173081.038.png 787173081.039.png 787173081.040.png 787173081.041.png 787173081.042.png 787173081.043.png 787173081.045.png 787173081.046.png 787173081.047.png 787173081.048.png 787173081.049.png 787173081.050.png 787173081.051.png 787173081.052.png 787173081.053.png 787173081.054.png 787173081.056.png 787173081.057.png 787173081.058.png 787173081.059.png 787173081.060.png 787173081.061.png 787173081.062.png 787173081.063.png 787173081.064.png 787173081.065.png 787173081.067.png 787173081.068.png 787173081.069.png 787173081.070.png 787173081.071.png 787173081.072.png 787173081.073.png 787173081.074.png 787173081.075.png 787173081.076.png 787173081.078.png 787173081.079.png 787173081.080.png 787173081.081.png 787173081.082.png 787173081.083.png 787173081.084.png 787173081.085.png 787173081.086.png 787173081.087.png 787173081.089.png 787173081.090.png 787173081.091.png 787173081.092.png 787173081.093.png 787173081.094.png 787173081.095.png 787173081.096.png 787173081.097.png 787173081.098.png 787173081.100.png 787173081.101.png 787173081.102.png 787173081.103.png 787173081.104.png 787173081.105.png 787173081.106.png 787173081.107.png 787173081.108.png 787173081.109.png 787173081.111.png 787173081.112.png 787173081.113.png 787173081.114.png 787173081.115.png 787173081.116.png 787173081.117.png 787173081.118.png 787173081.119.png 787173081.120.png 787173081.122.png
 
PICREF-1
Normal Operation
The transistor drive signals are fed into the IGBT Drive
circuits (Inverter Drive Card) to determine the state (ON
or OFF) of each transistor. A drive signal of ‘
In normal operation (FAULT is LOW and ENABLE is
HIGH), the states of Q9, Q10, Q11 and Q12 are deter-
mined by POS_NEG and PWM signals. These signals
pass through steering logic which produce transistor
(QX) drive signals (see Inverter Control Card schemat-
ics in Appendix B ).
The steering logic causes the IGBT pairs Q9,Q11 and
Q10,Q12 to be held in the OFF state for one microsec-
ond before allowing them to switch ON. This prevents
shoot-through from occurring during changes of states
from the PWM. This is necessary because of the rela-
tively slow turn off times for the IGBTs. This prevents
complementary pairs from being ON at the same time.
Table 1 describes the drive values for different input val-
ues of POS_NEG and PWM.
’ corre-
sponds to an IGBT being OFF, and a drive signal of ‘
1
0
corresponds to an IGBT being ON.
From Table 1 , when the POS_NEG signal is
, Q10 is
held ON, Q12 is held OFF, and Q9,Q11 are modulated
in a complementary fashion with the PWM signal. Sim-
ilarly, when POS_NEG is
0
, Q9 is held ON, Q11 is held
OFF, and Q10,Q12 are modulated in a complementary
fashion with the PWM signal. Therefore, the differential
output signal from the H-Bridge has an average value
proportional to the duty cycle of the PWM signal and a
polarity set by the POS_NEG signal. The output filter
smooths this pulse train and all that remains is the aver-
age value of the PWM signal ( Figure 3 ).
To understand how the PIC17C43 determines the mod-
ulation for the H-Bridge transistors, please see the sec-
tion
1
TABLE 1
INVERTER CONTROL SIGNALS
Software Overview
.
Q9
Drive
Q10
Drive
Q11
Drive
Q12
Drive
POS_NEG
PWM
0
0
0
0
1
1
0
1
1
0
0
1
1
0
0
0
1
1
1
1
0
1
1
0
QX Drive =
-> transistor QX is OFF
1
QX Drive =
-> transistor QX is ON
0
FIGURE 3:
INVERTER WAVEFORMS
AC Output
AC HI/LO
T
POS_NEG
PWM
T
1997 Microchip Technology Inc.
DS30450C-page 5
ã
787173081.123.png 787173081.124.png 787173081.125.png 787173081.126.png 787173081.127.png 787173081.128.png 787173081.129.png 787173081.130.png 787173081.132.png 787173081.133.png 787173081.134.png 787173081.135.png 787173081.136.png 787173081.137.png 787173081.138.png 787173081.139.png 787173081.140.png 787173081.141.png 787173081.143.png 787173081.144.png 787173081.145.png 787173081.146.png 787173081.147.png 787173081.148.png 787173081.149.png 787173081.150.png 787173081.151.png 787173081.152.png 787173081.154.png 787173081.155.png 787173081.156.png 787173081.157.png 787173081.158.png 787173081.159.png 787173081.160.png 787173081.161.png 787173081.162.png 787173081.163.png 787173081.165.png 787173081.166.png 787173081.167.png 787173081.168.png 787173081.169.png 787173081.170.png 787173081.171.png 787173081.172.png 787173081.173.png 787173081.174.png 787173081.176.png 787173081.177.png 787173081.178.png 787173081.179.png 787173081.180.png 787173081.181.png
 
Zgłoś jeśli naruszono regulamin