Bertsekas Dimitri, Tsitsiklis John N. - Introduction To Probability.pdf
(
1702 KB
)
Pobierz
136577830 UNPDF
LECTURE NOTES
Course 6.041-6.431
M.I.T.
FALL 2000
Introduction to Probability
Dimitri P. Bertsekas and John N. Tsitsiklis
Professors of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts
These notes are copyright-protected but may be freely distributed for
instructional nonprofit pruposes.
Contents
1. Sample Space and Probability . . . . . . . . . . . . . . . .
1.1. Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2. Probabilistic Models . . . . . . . . . . . . . . . . . . . . . . .
1.3. Conditional Probability . . . . . . . . . . . . . . . . . . . . .
1.4. Independence . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5. Total Probability Theorem and Bayes’ Rule . . . . . . . . . . . .
1.6. Counting . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7. Summary and Discussion . . . . . . . . . . . . . . . . . . . .
2. Discrete Random Variables . . . . . . . . . . . . . . . . .
2.1. Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . .
2.2. Probability Mass Functions . . . . . . . . . . . . . . . . . . .
2.3. Functions of Random Variables . . . . . . . . . . . . . . . . . .
2.4. Expectation, Mean, and Variance . . . . . . . . . . . . . . . . .
2.5. Joint PMFs of Multiple Random Variables . . . . . . . . . . . . .
2.6. Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7. Independence . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8. Summary and Discussion . . . . . . . . . . . . . . . . . . . .
3. General Random Variables . . . . . . . . . . . . . . . . .
3.1. Continuous Random Variables and PDFs . . . . . . . . . . . . .
3.2. Cumulative Distribution Functions . . . . . . . . . . . . . . . .
3.3. Normal Random Variables . . . . . . . . . . . . . . . . . . . .
3.4. Conditioning on an Event . . . . . . . . . . . . . . . . . . . .
3.5. Multiple Continuous Random Variables . . . . . . . . . . . . . .
3.6. Derived Distributions . . . . . . . . . . . . . . . . . . . . . .
3.7. Summary and Discussion . . . . . . . . . . . . . . . . . . . .
4. Further Topics on Random Variables and Expectations . . . . . .
4.1. Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2. Sums of Independent Random Variables - Convolutions . . . . . . .
iii
iv
Contents
4.3. Conditional Expectation as a Random Variable . . . . . . . . . . .
4.4. Sum of a Random Number of Independent Random Variables . . . .
4.5. Covariance and Correlation . . . . . . . . . . . . . . . . . . .
4.6. Least Squares Estimation . . . . . . . . . . . . . . . . . . . .
4.7. The Bivariate Normal Distribution . . . . . . . . . . . . . . . .
5. The Bernoulli and Poisson Processes . . . . . . . . . . . . . .
5.1. The Bernoulli Process . . . . . . . . . . . . . . . . . . . . . .
5.2. The Poisson Process . . . . . . . . . . . . . . . . . . . . . . .
6. Markov Chains . . . . . . . . . . . . . . . . . . . . . . .
6.1. Discrete-Time Markov Chains . . . . . . . . . . . . . . . . . .
6.2. Classification of States . . . . . . . . . . . . . . . . . . . . . .
6.3. Steady-State Behavior . . . . . . . . . . . . . . . . . . . . . .
6.4. Absorption Probabilities and Expected Time to Absorption . . . . .
6.5. More General Markov Chains . . . . . . . . . . . . . . . . . . .
7. Limit Theorems . . . . . . . . . . . . . . . . . . . . . . .
7.1. Some Useful Inequalities . . . . . . . . . . . . . . . . . . . . .
7.2. The Weak Law of Large Numbers . . . . . . . . . . . . . . . . .
7.3. Convergence in Probability . . . . . . . . . . . . . . . . . . . .
7.4. The Central Limit Theorem . . . . . . . . . . . . . . . . . . .
7.5. The Strong Law of Large Numbers . . . . . . . . . . . . . . . .
Plik z chomika:
chomikSGHowy
Inne pliki z tego folderu:
Hoel P. - Introduction to Mathematical Statistics (6th ed.).pdf
(69809 KB)
Feller W. - An Introduction to Probability Theory and its Applications Vol I.pdf
(62167 KB)
Altman D. - Statistics With Confidence (2nd edition, BMJ, 2005).pdf
(35355 KB)
Papoulis - Probability, Random Variables and Stochastic Processes (3rd ed).pdf
(56245 KB)
Ghosh Jayanta - An Introduction to Bayesian Analysis (Springer, 2006).pdf
(15844 KB)
Inne foldery tego chomika:
Pliki dostępne do 01.06.2025
Pliki dostępne do 08.07.2024
Pliki dostępne do 19.01.2025
0123nu239d0q01v34r35510093f
Administracja finansowa i kontrola skarbowa
Zgłoś jeśli
naruszono regulamin