W4.pdf

(116 KB) Pobierz
wyklady.dvi
1 Definicja (a n )
S n = a 1 + a 2 + + a n
X
a n a n
n
n!1 S n
X
n2N
X
a n
n!1 S n =
a n
n2N
n2N
2 Przykład
X
n = 1 + 2 + + n + . . .
n=1
X
−n 2 = −1 − 4 − 9 − 16 − − n 2 − . . .
n=1
X
(−1) n n = −1 + 2 − 3 + 4 − 5 + + (−1) n n + . . .
n=1
X
2 n = 1
2 + 1
4 + 1
1
2 n + . . .
8 + +
n=1
3 T WIERDZENIE
1
X
a n
a n
n2N
n!1 a n = 0.
lim
4 Przykład
+
lim
lim
1
1
1
1
1
47713882.041.png
5 Przykład
X
n = 1 + 1
2 + 1
3 + 1
4 + . . .
n2N
1 + 1
2 + 1
3 + 1
4
+ 1
5 + 1
6 + 1
7 + 1
8
+ 1
9 +
1
10 +
1
11 +
1
12 +
1
13 +
1
14 +
1
15 +
1
16
+ . . .
| {z }
4 = 2
|
{z
}
|
{z
}
8 = 2
16 = 2
= 1 + 1
2 + 1
2 + 1
2 + = ∞
6 T WIERDZENIE
X
a n
s
c
X
n2N
X
ca n
cs
a n
c = 0
n2N
X
n2N
ca n
n2N
X
aq n
a
1 − q
7 Przykład
−1 < q < 1
n2N 0
a < 0
a
a > 0
8 Definicja
a = 0
X
(−1) n−1
n
= 1 − 1
2 + 1
1
4 + + (−1) n−1
+ . . . .
3
n
n2N
X
X
9 T WIERDZENIE
a n
a n
≥ 0
b n
n2N
n2N
X
n 0
n
n 0
a n
b n
a n
n2N
10 Przykład
X
n − 1
n
1
2 n = 1
1
2 2 + 2
2 3 + 3
1
2 4 + . . .
2
3
4
n2N
n
0 ≤ n − 1
n
1
2 n
1
2 n ,
1
1
47713882.042.png 47713882.043.png 47713882.044.png 47713882.001.png 47713882.002.png 47713882.003.png 47713882.004.png 47713882.005.png 47713882.006.png 47713882.007.png 47713882.008.png
X
1
2 n
1
2
n2N
11 T WIERDZENIE
X
a n
X
b n
b n
n2N
n2N
0
n 0
n ≥ n 0
a n
≥ b n
a n
n2N
12 Przykład
X
n + 1
n 2
3
2 2 +
4
3 2 + . . .
= 2 +
n2N
n
0 ≤ 1
n
1
n
n + 1
n
= n + 1
n 2
,
X
1
n
n2N
+
X
b n
n2N
X
a n
n2N
13 T WIERDZENIE
X
a n
n 0
n2N
n ≥ n 0
a n+1
a n
≤ p < 1,
X
a n
n 0
n2N
n ≥ n 0
a n+1
a n
≥ 1,
q
14 T WIERDZENIE
lim
n!1
a n+1
a n
= r < 1
X
a n
n2N
X
47713882.009.png 47713882.010.png 47713882.011.png 47713882.012.png 47713882.013.png 47713882.014.png 47713882.015.png
lim
n!1
a n+1
a n
= s > 1
X
a n
n2N
q
+
lim
n!1
a n+1
a n
= 1
15 Przykład
X
n − 1
n
2 n = 1
1
2 2 + 2
1
2 3 + 3
2 4 + . . .
2
3
4
n2N
a n+1
a n
=
n
n+1
1
2 n+1
=
n n 2 n
(n + 1) 2 n+1 (n − 1) =
n 2
n 2 − 1
1
2
−→
n!1
1
2 < 1.
n−1
n
2 n
lim
n!1
a n+1
a n
= lim
n!1
1/(n + 1)
1/n
= lim
n!1
n
n + 1 = 1.
16 T WIERDZENIE
X
a n
n 0
n2N
n ≥ n 0
n
a n
≤ p < 1,
X
a n
n 0
n2N
n ≥ n 0
a n
≥ 1,
q
X
17 T WIERDZENIE
lim
n!1
n
a n = r < 1
a n
n2N
lim
n!1
a n = s > 1
X
a n
n2N
1
1
n
n
47713882.016.png 47713882.017.png 47713882.018.png 47713882.019.png 47713882.020.png 47713882.021.png 47713882.022.png 47713882.023.png 47713882.024.png 47713882.025.png
q
+
lim
n!1
a n = 1
+
X
[2 + (−1) n ]
2 n
= 1
2 +
3
2 2 +
1
2 3 +
3
2 4 + . . . .
n2N
s
p
[2 + (−1) n ]
2 n
n
2 + (−1) n
2
= 1
lim
n!1
n
lim
n!1
2 ,
18 Przykład
X
n 2
2 n
n2N
s
2
n 2
2 n
n
n 2
2
n
n
1
2 ,
n
=
=
−→
n!1
2
lim
n!1
n = 1
+
n
19 Przykład
n!
n n
a n+1
a n
(n+1)!
(n+1) n+1
n!
n n
(n + 1)! n n
n! (n + 1) n+1
n
n + 1
n
1 − 1
n + 1
n
=
=
=
=
=
1 − 1
n + 1
n+1 n + 1
n
−→
n!1
1
e
1 < 1
n!
n
n
n
47713882.026.png 47713882.027.png 47713882.028.png 47713882.029.png 47713882.030.png 47713882.031.png 47713882.032.png 47713882.033.png 47713882.034.png 47713882.035.png 47713882.036.png 47713882.037.png 47713882.038.png 47713882.039.png 47713882.040.png
Zgłoś jeśli naruszono regulamin