100 Functional Equations Problems.pdf
(
130 KB
)
Pobierz
Functional Equations Problems
AMIR HOSSEIN PARVARDI
JUNE 13, 2011
Dedicated to
PCO
.
email:
ahpwsog@gmail.com
, blog:
http://math-olympiad.blogsky.com
.
1
1
DEFINITIONS
•N
is the set of positive integers.
•N∪{
0
}
=
N
is the set of non-negative integers.
•Z
is the set of integers.
•Q
is the set of rational numbers.
•R
+
is the set of positive real numbers.
•R
is the set of real numbers.
•
If a function
f
is defined on the set
A
to the set
B
, we write
f
:
A→B
and read “
f
is a function from the set
A
to the set
B
.”
2
2
PROBLEMS
1.
Find all surjective functions f : N→N such that f (n)≥n + (−1)
n
,∀n∈N.
2.
Find all functions g : R→R such that for any real numbers x and y
g(x + y) + g(x)g(y) = g(xy) + g(x) + g(y).
3.
Find all real valued functions defined on the reals such that for every real
x, y
f (x
2
−y
2
) = xf (x)−yf (y).
4. Find all real valued functions defined on the reals such that for every real
x, y:
f (xf (x) + f (y)) = f (x)
2
+ y.
Find all functions f : N→N such that f (f (n)) + (f (n))
2
= n
2
+ 3n + 3 for
5.
all positive integers n.
6. Let n be a positive integer. Find all strictly increasing functions f : N
→N
such that the equation
f (x)
k
n
= k−x
has an integral solution x for all k∈N.
Find all functions f : R
+
→R
+
7.
such that
f (
x + y
2
2f (x)f (y)
f (x) + f (y)
∀x, y∈R
+
.
) =
8.
Find all functions f : R→R such that
f (1−x) = 1−f (f (x)) ∀x∈R.
Find all functions f : R
+
→R
+
9.
such that
f (1 + xf (y)) = yf (x + y) ∀x, y∈R
+
.
10.
Find all functions f : R
+
→R
+
such that
f (xf (y)) = f (x + y) ∀x, y∈R
+
.
11.
Find all functions f : R→R such that
f (f (x) + y) = f (x
2
−y) + 4yf (x) ∀x, y∈R.
12.
Find all functions f, g, h : R→R such that
f (x + y) + g(x−y) = 2h(x) + 2h(y) ∀x, y∈R.
3
13.
Find all functions
f
:
R→R
such that
f
(
x
+
y
+
z
) =
f
(
x
)
f
(1
−y
) +
f
(
y
)
f
(1
−z
) +
f
(
z
)
f
(1
−x
)
∀x, y, z∈R.
14.
Find all functions
f
:
R→R
such that
f
(
f
(
x
)
−f
(
y
)) = (
x−y
)
2
f
(
x
+
y
)
∀x, y∈R.
15.
Find all functions
f, g
:
R→R
such that
•
If
x < y
, then
f
(
x
)
< f
(
y
);
•
for all
x, y∈R
, we have
f
(
xy
) =
g
(
y
)
f
(
x
) +
f
(
y
).
16.
Find all functions
f
:
R→R
such that
f
((
x
+
z
)(
y
+
z
)) = (
f
(
x
) +
f
(
z
))(
f
(
y
) +
f
(
z
))
∀x, y, z∈R.
17.
Find all functions
f
:
R→R
that satisfy
f
(
x
3
+
y
3
) =
x
2
f
(
x
) +
yf
(
y
2
)
for all
x, y∈R.
18.
Find all functions
f
:
R→R
that satisfy
f
(
m
+
nf
(
m
)) =
f
(
m
) +
mf
(
n
)
for all
m
and
n
.
19.
Find all functions
f
:
R→R
such that
f
(
x
)
f
(
y
) =
f
(
x
+
y
) +
xy
for all
x, y∈R
.
20.
Find all functions
f
:
N∪{
0
}→N∪{
0
}
.Such that
x
3
f (y)
divides
f
(
x
)
3
y
for all
x, yN∪{
0
}
.
21.
Find all continuous functions
f
:
R→R
such that
f
(
x
+
y
)
f
(
x−y
) = (
f
(
x
)
f
(
y
))
2
∀x, y∈R.
22.
Find all functions
f
:
R→R
such that
(
x
+
y
)(
f
(
x
)
−f
(
y
)) = (
x−y
)
f
(
x
+
y
)
∀x, y∈R.
23.
Find all functions
f
:
R→R
such that
f
((
f
(
x
) +
y
) =
f
(
x
2
−y
) + 4
f
(
x
)
y ∀x, y∈R.
24.
Find all the functions
f
:
Z→R
such that
f
(
m
+
n−mn
) =
f
(
m
) +
f
(
n
)
−f
(
mn
)
∀m, n∈Z
4
Find all functions f : (0, 1)→(0, 1) such that f (
2
) =
2
25.
and
(f (ab))
2
= (af (b) + f (a)) (bf (a) + f (b)) ∀a, b∈(0, 1).
26. Find all functions f : Q→Q such that
f (x + y + f (x)) = x + f (x) + f (y) ∀x, y∈Q.
27. Find all functions f : R→R such that
f (x
2
+ f (y)) = (x−y)
2
f (x + y) ∀x, y∈R.
28. Find all functions f : R→R such that
•f (x + y) = f (x) + f (y) ∀x, y∈R,
•f (x) = x
2
f (
x
) ∀x∈R\{0}.
29. Let a >
3
4
be a real number. Find all functions f : R→R such that
f (f (x)) + a = x
2
∀x∈R.
30.
Find all injective functions f : N→N which satisfy
f (f (n))≤
n + f (n)
2
∀n∈N.
31.
Find all continuous functions f (x), g(x), q(x) : R→R such that
f (x
2
) + f (y
2
) = [q(x)−q(y)]g(x + y) ∀x, y∈R.
32.
Find all functions f : R→R so that
f (x + y) + f (x−y) = 2f (x) cos y ∀x, y∈R.
33.
Find all functions f : R→R such that
f (x−f (y)) = f (x) + xf (y) + f (f (y)) ∀x, y∈R.
Find all functions f : R
+
→R
+
such that
34.
f (f (x)) = 6x−f (x) ∀x∈R
+
.
35.
Find all functions f : R→R such that
f (x + y) + f (xy) + 1 = f (x) + f (y) + f (xy + 1) ∀x, y∈R.
36.
Find all functions f : R→R such that
f (x)f (yf (x)−1) = x
2
f (y)−f (x) ∀x, y∈R.
5
Plik z chomika:
MatMaster1996
Inne pliki z tego folderu:
Khor Shi-Jie - A Potpourri of Algebra.pdf
(513 KB)
100 Functional Equations Problems.pdf
(130 KB)
The Interesting Around Technical Analysis Three Variable Inequalities - Nguyen Duy Tung, Zhou Yuan Zhe.pdf
(297 KB)
100 Nice Polynomial Problems With Solutions - Amir Hossein Parvardi.pdf
(149 KB)
116 problems.pdf
(210 KB)
Inne foldery tego chomika:
Geometria
Kombinatoryka
Nierówności
Różne
Sprawozdania OM
Zgłoś jeśli
naruszono regulamin