Lecture_Notes_on_Analysis-Kuttler.pdf
(
3892 KB
)
Pobierz
584797880 UNPDF
LectureNotes
Kuttler
October8,2006
2
Contents
IPreliminaryMaterial 9
1SetTheory 11
1.1BasicDe¯nitions............................. 11
1.2TheSchroderBernsteinTheorem.................... 14
1.3EquivalenceRelations.......................... 17
1.4PartiallyOrderedSets.......................... 18
2TheRiemannStieltjesIntegral 19
2.1UpperAndLowerRiemannStieltjesSums............... 19
2.2Exercises ................................. 23
2.3FunctionsOfRiemannIntegrableFunctions.............. 24
2.4PropertiesOfTheIntegral........................ 27
2.5FundamentalTheoremOfCalculus................... 31
2.6Exercises ................................. 35
3ImportantLinearAlgebra 37
3.1AlgebrainF
n
............................... 39
3.2SubspacesSpansAndBases....................... 40
3.3AnApplicationToMatrices....................... 44
3.4TheMathematicalTheoryOfDeterminants.............. 46
3.5TheCayleyHamiltonTheorem..................... 59
3.6AnIdentityOfCauchy.......................... 60
3.7BlockMultiplicationOfMatrices.................... 61
3.8Shur'sTheorem.............................. 63
3.9TheRightPolarDecomposition..................... 69
3.10TheSpace
L
(F
n
;
F
m
) .......................... 71
3.11TheOperatorNorm........................... 72
4TheFrechetDerivative 75
4.1
C
1
Functions............................... 78
4.2
C
k
Functions............................... 83
4.3MixedPartialDerivatives........................ 83
4.4ImplicitFunctionTheorem....................... 85
4.5MoreContinuousPartialDerivatives.................. 89
3
4
CONTENTS
IILectureNotesForMath641and642 91
5MetricSpacesAndGeneralTopologicalSpaces 93
5.1MetricSpace............................... 93
5.2CompactnessInMetricSpace...................... 95
5.3SomeApplicationsOfCompactness................... 98
5.4AscoliArzelaTheorem..........................100
5.5GeneralTopologicalSpaces.......................103
5.6ConnectedSets..............................109
5.7Exercises .................................112
6ApproximationTheorems 115
6.1TheBernsteinPolynomials .......................115
6.2StoneWeierstrassTheorem.......................117
6.2.1TheCaseOfCompactSets...................117
6.2.2TheCaseOfLocallyCompactSets...............120
6.2.3TheCaseOfComplexValuedFunctions............121
6.3Exercises .................................122
7AbstractMeasureAndIntegration 125
7.1
¾
Algebras.................................125
7.2TheAbstractLebesgueIntegral.....................133
7.2.1PreliminaryObservations....................133
7.2.2De¯nitionOfTheLebesgueIntegralForNonnegativeMea-
surableFunctions.........................135
7.2.3TheLebesgueIntegralForNonnegativeSimpleFunctions..136
7.2.4SimpleFunctionsAndMeasurableFunctions.........139
7.2.5TheMonotoneConvergenceTheorem.............140
7.2.6OtherDe¯nitions.........................141
7.2.7Fatou'sLemma..........................142
7.2.8TheRighteousAlgebraicDesiresOfTheLebesgueIntegral .144
7.3TheSpace
L
1
...............................145
7.4VitaliConvergenceTheorem.......................151
7.5Exercises .................................153
8TheConstructionOfMeasures 157
8.1OuterMeasures..............................157
8.2Regularmeasures.............................163
8.3Urysohn'slemma.............................164
8.4PositiveLinearFunctionals.......................169
8.5OneDimensionalLebesgueMeasure..................179
8.6TheDistributionFunction........................179
8.7CompletionOfMeasures.........................181
8.8ProductMeasures ............................185
8.8.1GeneralTheory..........................185
8.8.2CompletionOfProductMeasureSpaces............189
CONTENTS
5
8.9DisturbingExamples...........................191
8.10Exercises .................................193
9LebesgueMeasure 197
9.1BasicProperties .............................197
9.2TheVitaliCoveringTheorem......................201
9.3TheVitaliCoveringTheorem(ElementaryVersion)..........203
9.4VitaliCoverings..............................206
9.5ChangeOfVariablesForLinearMaps.................209
9.6ChangeOfVariablesFor
C
1
Functions.................213
9.7MappingsWhichAreNotOneToOne.................219
9.8LebesgueMeasureAndIteratedIntegrals ...............220
9.9SphericalCoordinatesInManyDimensions..............221
9.10TheBrouwerFixedPointTheorem...................224
9.11Exercises .................................228
10The
L
p
Spaces 233
10.1BasicInequalitiesAndProperties....................233
10.2DensityConsiderations..........................241
10.3Separability................................243
10.4ContinuityOfTranslation........................245
10.5Molli¯ersAndDensityOfSmoothFunctions .............246
10.6Exercises .................................249
11BanachSpaces 253
11.1TheoremsBasedOnBaireCategory..................253
11.1.1BaireCategoryTheorem.....................253
11.1.2UniformBoundednessTheorem.................257
11.1.3OpenMappingTheorem.....................258
11.1.4ClosedGraphTheorem.....................260
11.2HahnBanachTheorem..........................262
11.3Exercises .................................270
12HilbertSpaces 275
12.1BasicTheory...............................275
12.2ApproximationsInHilbertSpace....................281
12.3OrthonormalSets.............................284
12.4FourierSeries,AnExample.......................286
12.5Exercises .................................288
13RepresentationTheorems 291
13.1RadonNikodymTheorem........................291
13.2VectorMeasures .............................297
13.3RepresentationTheoremsForTheDualSpaceOf
L
p
.........304
13.4TheDualSpaceOf
C
(
X
)........................312
13.5TheDualSpaceOf
C
0
(
X
)........................314
Plik z chomika:
Kuya
Inne pliki z tego folderu:
An_Introduction_to_Operator_Algebras-Marcoux.pdf
(882 KB)
Analysis-Hyland.pdf
(333 KB)
Basic_Analysis-Kuttler.pdf
(2103 KB)
Lecture_Notes_on_Analysis-Kuttler.pdf
(3892 KB)
Mathematical_Methods_of_Engineering_Analysis-Cinlar-Vanderbei.pdf
(483 KB)
Inne foldery tego chomika:
algebra
calculus
complex
computation
discrete
Zgłoś jeśli
naruszono regulamin